
Optimizing Transfer Efficiency in Multi-Cloud
Storage Systems with Edge and Fog Computing

Nitesh Bharot, Nisha Ghangare, Priyanka Verma
Data Science Institute, University of Galway, Ireland {firstname.lastname}@universityofgalway.ie

Abstract—Multi-cloud environments have emerged as a
promising solution for computing, offering scalability, fault tol-
erance, and vendor flexibility. However, efficient data transfer
between multiple cloud providers and data owners is crucial for
ensuring optimal performance and timely execution of workloads.
This paper explores the challenges associated with data trans-
fer rates in multi-cloud storage systems and discusses various
optimization strategies to improve data transfer efficiency. It
highlights the limitations of single-cloud storage systems and the
unresolved issues related to data transfer in conventional models.
To address these challenges, a comprehensive architecture is pro-
posed, integrating multiple cloud storage services and leveraging
fog and edge computing paradigms. The study aims to optimize
the data transfer efficiency in multi-cloud storage systems.

Index Terms—Multi-cloud, Transfer rate, Bandwidth, Fog
computing, Edge computing

I. INTRODUCTION

Cloud computing’s inception has unlocked vast opportu-
nities for the development and global provision of services,
democratizing the digital space for individuals and small busi-
nesses [1], [2]. Despite these advancements, the reliance on
single-cloud storage systems introduces substantial limitations,
including capacity, bandwidth, geographical reach, and poten-
tial service disruptions. Furthermore, vendor lock-in confines
users to the capabilities of a single provider, impacting the
scalability and versatility of services. This reality underscores
the insufficiency of conventional single-cloud models to cater
to escalating storage demands in today’s digital landscape.
While cloud computing has been extensively researched, many
unresolved issues persist [3], [4]. These include challenges re-
lated to proprietary APIs, the need for application architectures
that effectively align with the underlying cloud environment
[5], [6], and efficient data transfer. Hence, it’s paramount
to address these challenges and explore innovative strategies
that optimize storage and data transfer efficiency in cloud
environments.

There is no question that the research landscape has been
completely transformed by the fast progress of cloud com-
puting technology, which has made it possible for everyone
to interact globally, access immense computational resources,
and store and analyze massive information. But the idea of
a single cloud provider could not be adequate to address the
various needs of research groups as cloud computing develops.
Thus, in order to provide improved scalability, fault tolerance,
cost optimization, and data sovereignty, a multi-cloud system
that incorporates different cloud providers is presented in this
article as a comprehensive architecture. Our research aims

to address the critical issues by exploring the potential of
multi-cloud storage system in conjunction with edge and fog
computing paradigms.

In 2010, Vukolic et al. [7] first suggested the idea of
multi-cloud. Following that, a lot of work was done on the
multi-cloud storage and database systems. DEPSKY [8] offers
a methodology that divides files into many sections before
sending them to the servers of various cloud companies.
DEPSKY first uses its technique in a commercial cloud to
prevent frequent service interruptions. The owner of the data
is no longer to be concerned about vendor lock-in. Even if
one cloud server fails, the owner of the data can still restore
it all using other clouds. NCCloud [9] splits the file using
regeneration codes, which require less repair traffic and retain
the same fault tolerance and data redundancy as conventional
erasure codes (like RAID-6) but with less repair traffic.

The prominence of information storage and retrieval in
multi-cloud settings is on the rise. Sohal et al. [10] introduce
a multi-cloud structure aimed at safeguarding user data. The
main objective is to protect user data from potentially un-
trustworthy Cloud Service Providers (CSPs) who might share
user data with malicious entities for personal gain. To fulfill
this goal, data is segmented, encrypted, and dispersed across
various clouds, employing client-side cryptography within
their proposed structure.

A unified architecture was presented in [11] research to
provide safe data exchange in a multi-cloud. Slice-based safe
data sharing, similar to the concept above, was developed by
Xu et al. [12] to enable secure data sharing in a multi-cloud.
Since the meta table is still unprotected and this model does
not accept video files, harmful insider attacks can occur.

Despite much research in the domain of multi-cloud plat-
forms, there have been very few in the domain of data
transfer in a multi-cloud platform. There are certain factors
that intensely influence the transfer rates: (i) The latency
introduced by the network infrastructure connecting the cloud
providers significantly affects data transfer rates. High latency
can lead to delays and suboptimal performance, especially
when transferring data over long distances or across geograph-
ically dispersed clouds. (ii) The available bandwidth between
cloud providers determines the maximum data transfer rate
achievable. Limited bandwidth can result in bottlenecks and
prolonged transfer times, impacting research workflows. (iii)
The choice of data transfer protocols, such as TCP, UDP, or
specialized transfer protocols like GridFTP or Aspera, can im-
pact transfer rates. Different protocols have varying overheads,

20
23

 IE
EE

 2
nd

 In
du

st
ria

l E
le

ct
ro

ni
cs

 S
oc

ie
ty

 A
nn

ua
l O

n-
Li

ne
 C

on
fe

re
nc

e
(O

N
C

O
N

) |
 9

79
-8

-3
50

3-
57

97
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

O
N

C
O

N
60

46
3.

20
23

.1
04

31
11

0

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on April 24,2024 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Block diagram of the proposed framework

error recovery mechanisms, and throughput capabilities.
Keeping these in mind, we propose optimizing transfer

efficiency in multi-cloud storage system in association with
edge and fog computing framework. The key contributions of
this paper are:

• Proposed framework presents a novel architecture inte-
grating multi-cloud, edge, and fog computing, resulting in
enhanced data transfer rate across diverse and distributed
computing environments.

• Proposed work utilizes data compression algorithms to
compress the data before it is transferred between clouds.
Compressed data requires less bandwidth and can be
transmitted more quickly, resulting in a optimized transfer
rate.

• To mitigate security risks and safeguard data against
unauthorized access, we have implemented the ChaCha20
encryption technique in the proposed framework.

II. PROPOSED METHODOLOGY

Data transfer is one of the critical components in a multi-
cloud architecture. A large data file takes a significant amount
of time to transfer to a multi-cloud or any storage architecture
which in turn reduces the system’s latency and causes delays.
This also reduces the system’s efficiency and affects the
overall performance. Hence to overcome these issues, the
proposed framework, not only provides efficient data transfer
but also provides security. It enables the use of edge layers
and fog layers to store data securely and efficiently on multi-
cloud architecture. Additionally, it uses a error correction and
detection mechanism which checks the files for tampering and
enhances the utility of the system. The overall framework is
described in detail as follows:

A. Architectural Overview

Figure 1 describes the architecture of the proposed frame-
work for multi-cloud storage service. It consists of various
layers which have their own computation mechanisms to allow
secure and efficient data transfer. These are described as data
owners, edge layer, fog layer, and multi-cloud storage system.

The data owner, as the name suggests, is the owner of the
data. It is responsible for uploading the data to multi-cloud
platforms. A data owner could be a person or an organization
and is believed to have a large amount of data to store on
the cloud platform. Edge Layer is the first computation layer
between the multi-cloud and the data owner. It is responsible
for the initial computations of the data file at the user end.
It is believed to be equipped with technologies like a data
slicer, data encrypter, and data compressor. The fog Layer
is the second computation layer between the multi-cloud and
data owner. It is larger than the edge layer and is supposed
to handle the major computations for a file before/after it
is uploaded/downloaded to the multi-cloud architecture. It is
believed to be equipped with error detection and correction
mechanisms, data decompressors, data uploaders, and reg-
istries. Multi-cloud storage is a multi-story data storage system
from different providers that is used to store large data files.
It’s an environment of multiple cloud storage services that
work hand in hand to provide sufficient data storage abilities
to the data owners. The number of cloud service providers
depends upon the data owner and their overall cost to buy the
resources.

B. Proposed Framework

The proposed framework is a secure data transfer method-
ology that uses edge computing and fog computing to enhance
data transfer. Initially, the data owner chooses the number of
cloud storage to store its files. Next, it uses the edge computing
layer attached to it for data uploading. The edge layer first
divides the data into multiple segments based on the number
of cloud storage chosen. The data encryption mechanism
present in the cloud next encrypts the file to detain any
unauthenticated personnel to gain any information from the
data. Then the data compression mechanism compresses the
encrypted data to allow an efficient data transfer. Furthermore,
the compressed data files are sent to the fog layer parallelly.
The fog layer, which is connected just prior to the multi-cloud
system receives the compressed data and decompresses it. It
then uses the error detection and correction mechanism to

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on April 24,2024 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Workflow of the proposed framework

check for each data file subpart consistency. If any of the
sub-parts is tempered or received with error then it sends
a request for re-transfer of the file. After affirmation, the
correct encrypted file is passed through the registry where it
gets assigned to a suitable cloud service platform using the
scheduling algorithm. Finally, the data uploader uploads the
files to desired cloud service. Figure 2 describes the workflow
of the system. It enables efficient transfer with the help of
multiple tools and functionalities such as data slicing, data
encryption, data compression, data uploader, data decompres-
sor, error correction-detection mechanism, and registry.

• Data slicing: It is the initial computation performed by the
edge layer which divides the large data file into multiple
files based on the number of cloud service platforms
selected by the data owner. Data slicing can be advanta-
geous when uploading data to a multi-cloud platform as
it enables data distribution, optimizes bandwidth utiliza-
tion, enhances fault tolerance, ensures compliance with
data sovereignty requirements, and allows for cost opti-
mization. By strategically dividing and distributing data
subsets across multiple cloud providers, organizations
can leverage the benefits offered by different clouds and
create a robust and efficient multi-cloud infrastructure.

• Data encryption: It is the next computation required to
enable data security. After data slicing an appropriate
encryption technique is applied to the dataset. We used
ChaCha20 1 [13] to secure the data by encrypting it with a
secret key. Data encryption plays a crucial role in protect-

1https://pycryptodome.readthedocs.io/en/latest/src/cipher/chacha20.html

ing the confidentiality and integrity of data. It ensures that
sensitive information remains confidential by encoding
files with encryption algorithms, making them unreadable
to unauthorized individuals. It provides an additional
layer of security for data at rest, preventing unauthorized
access to stored files. During transmission, encryption
safeguards data from interception and eavesdropping.
Compliance with data protection regulations is facilitated
through encryption. Secure collaboration is enabled by
sharing encrypted files, ensuring only authorized parties
can access the content.

• Data compression: After encrypting the data, we used the
zlib library of Python to implement the data compression.
This enables us to reduce the size of the file to be
transferred across the network. In many facets of data
management and transmission, data compression is es-
sential. By more effectively encoding data, it tries to min-
imize the size of data files or streams. Reduced storage
needs, quicker data transfer rates, and better bandwidth
utilization are just a few advantages of compression. As
compressed files require less storage space, it facilitates
effective data backup and archiving. Data compression
is also necessary for multimedia applications since it
reduces the size of audio, picture, and video files without
significantly compromising their quality. Overall, data
compression improves resource utilization, transmission
effectiveness, and data management across a variety of
fields.

• Data uploader: It deals with data uploading. Its function-
ality is to upload the data to the multi-cloud storage.

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on April 24,2024 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

A multi-cloud data uploader simplifies the process of
uploading data to multiple cloud storage providers. It
integrates with various platforms, allowing simultaneous
uploads to different clouds. Optimized network utiliza-
tion, reduces upload time, and enhances efficiency. Data
integrity and security are prioritized, often including
encryption and integrity checks. The uploader offers
progress monitoring and error handling for reliable up-
loads.

• Data decompressor: This section deals with the data de-
compression part at the fog layer. It is a tool that reverses
the compression process by restoring compressed data to
its original form. It utilizes specific decompression algo-
rithms to expand compressed files and streams, allowing
users to regain access to uncompressed data. Data decom-
pressors support various compression formats, enabling
compatibility with a wide range of compressed files.
They optimize resource usage by efficiently extracting
and utilizing compressed data, preserving data integrity
throughout the decompression process.

• Error correction and detection mechanism: Mechanisms
for error correction and detection are essential for main-
taining the dependability and integrity of data reached to
the fog layer for sending to multi-cloud storage service.
These procedures are intended to locate and fix mistakes
that could happen when data is being sent or stored.
In order to find flaws in data, error detection and error
correction is used. These techniques play a crucial role
in preventing data corruption, improving the correctness
of data that is sent or stored, and maintaining the de-
pendability of storage and communication systems. By
detecting and correcting errors in real-time, these mech-
anisms ensure that data integrity is maintained during
transmission. This reduces the need for retransmissions
and minimizes the overall time and bandwidth required
for successful data transfer.

• Registry: The role of a registry that stores cloud id and
file id index pairs at the fog layer is to facilitate efficient
retrieval and management of files stored in a multi-cloud
storage. By storing these index pairs, the registry acts as
a centralized repository that maps file identifiers (file id)
to the corresponding cloud storage locations (cloud id).
This allows users or applications to easily locate and
access specific files by querying the registry instead of
searching through multiple cloud providers individually.
The registry enhances file search, retrieval, and metadata
management by providing a unified interface, simplifying
data governance, and optimizing the overall file manage-
ment process in a multi-cloud storage.

III. EXPERIMENTAL RESULTS & EVALUATION

The proposed schema deals to increase the transfer rate
of the data thereby enhancing the data transfer system and
reducing the system of latency issues. We conducted a series
of rigorous experiments to determine the best compression
technique and the best methodology to tackle the present

problem scenario. As mentioned in the previous section the
concepts of data slicing and data compression are the deter-
mined factors of the proposed framework which enhances the
transfer rate. These experiments have been conducted with
the help of Python 3.0, 1650Ti GTX integrated Intel i5 9th
generation processor. Moreover, Google Drive, DropBox, &
Mega cloud services are used to implement the multi-cloud
storage system.

This section compares the proposed framework with multi-
cloud storage systems against the traditional single cloud
storage systems. The proposed framework consists of the
inclusion of all steps mentioned in proposed methodology
section. Whereas in traditional single cloud storage systems
no such techniques such as data slicing and data compression
were employed. However, to accommodate the security aspects
and give a fair comparison with proposed we had included the
data encryption phase in single cloud storage systems as well.

Fig. 3. Comparison of transfer rate of proposed and traditional system for
different size CSV files

Figure 3 demonstrates the necessity of the proposed schema
by comparing the transfer rate for a CSV file with different
sizes. Transfer rate is described as the total time taken to
transfer the file from edge to fog layer. It depicts that a
considerable amount of increase in transfer rate could be
achieved from 5.7 MB per second to 18.84 MB per second
for 3GB csv data by implementing proposed framework. The
observations from Figure 3 indicate that proposed framework
aids to increase in transfer rate.

The proposed framework is also tested on text data for its
transfer rate as shown in Fig. 4. It is observed that proposed
framework act as a generalized mechanism for any data type to
enhance the data transfer rate. This figure indicates an increase
in the transfer rate from 6.07 MB per second to 18.13 MB per
second for 3GB of text data.

Table I presents a comparison of different compression
techniques in terms of time with the proposed framework. In
the proposed framework, data compression is applied after data
slicing and encryption. Thus, with the proposed framework
compression time will be less in comparison to compression
over the whole data file. The table consists of two file types,
CSV and TEXT, and provides the file sizes for each type. The

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on April 24,2024 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Comparison of transfer rate of proposed and traditional system for
different size TEXT files

TABLE I
COMPARISON OF COMPRESSION TECHNIQUES TIME (IN SECONDS) WITHIN

PROPOSED FRAMEWORK

File type File Size ZLIB GZIP BZ2 LZMA

CSV

1MB 0.010 0.011 0.055 0.107
10MB 0.089 0.098 0.461 0.876
50MB 0.444 0.465 2.396 5.809

100MB 0.153 0.172 0.270 0.448
200MB 1.780 1.845 0.808 26.013
300MB 2.628 2.806 13.166 38.169

1GB 1.623 1.766 2.470 4.373
2GB 16.742 18.270 83.088 243.191
3GB 25.117 27.191 123.467 378.369

TEXT

1MB 0.014 0.119 0.048 0.082
10MB 0.095 0.097 0.477 0.873
50MB 0.448 0.457 2.271 6.993

100MB 0.157 0.160 0.289 0.466
200MB 1.776 2.150 9.143 27.247
300MB 2.740 2.807 13.274 39.829

1GB 9.197 9.726 44.445 134.908
2GB 17.505 18.561 82.965 245.537
3GB 25.967 28.172 122.013 365.578

compression techniques compared are ZLIB, GZIP, BZ2, and
LZMA. The time measurements are given in seconds.

For the CSV file type, the following observations can be
made:

• As the file size increases, the time taken by each com-
pression technique is also increased. For example, for a
file size of 10MB, ZLIB took 0.089 seconds, GZIP took
0.098 seconds, BZ2 took 0.461 seconds, and LZMA took
0.876 seconds.

• Among the four compression techniques, LZMA consis-
tently took the longest time, especially for larger file sizes
and ZLIB takes the least time.

For the TEXT file type, similar observations can be made:
• The duration required for each compression technique

exhibited a direct relationship with file size. For instance,
a 10MB file necessitated 0.095 seconds for ZLIB, 0.097
seconds for GZIP, 0.477 seconds for BZ2, and 0.873
seconds for LZMA.

• Consistently, LZMA required the most time for data
slicing, particularly for larger files, while ZLIB proved

to be the most time-efficient technique.
These results indicate that the LZMA compression tech-

nique tends to have the highest time requirements for data
compression, while ZLIB and GZIP are generally faster. BZ2
falls in between the other techniques in terms of time taken.
For larger files, ZLIB seems to take less time for compression.
Thus, in the proposed framework we implemented ZLIB for
data compression.

Fig. 5. Comparison of compression time with and without proposed frame-
work

Figure 5 indicates that with proposed framework takes less
time for the compression in comparison to the whole data. It
establishes the fact that data compression time could be sig-
nificantly reduced by applying the concept of parallelization.

TABLE II
COMPARISON OF ENCRYPTION TIME OF PROPOSED WITH TRADITIONAL

FRAMEWORK

File type File size Proposed Traditional

CSV

1MB 0.003 0.078
10MB 0.010 1.983
50MB 0.060 5.336
100MB 0.093 6.187
200MB 0.195 11.432
300MB 0.315 18.857
1GB 0.986 58.323
2GB 2.023 76.743
3GB 3.278 127.404

TEXT

1MB 0.004 1.434
10MB 0.020 1.487
50MB 0.122 2.652
100MB 0.254 4.034
200MB 0.524 7.153
300MB 0.832 10.012
1GB 2.715 31.574
2GB 5.115 106.564
3GB 9.649 259.120

Table II compares the encryption time for different file types
with and without a proposed framework. The table includes
two file types, CSV and TEXT, and provides the file sizes for
each type. The encryption times are measured in seconds with
an encryption technique as ChaCha20.

For the CSV file type, the following observations can be
made:

• For a file size of 1MB, the proposed framework took
0.003 seconds, while the traditional approach (without
proposed) took 0.078 seconds for encryption.

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on April 24,2024 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

• As the file size increased, both traditional and proposed
framework, the encryption time also increased. For ex-
ample, for a file size of 10MB, proposed framework took
0.010 seconds, while traditional took 1.983 seconds.

• The proposed framework consistently resulted in faster
encryption times compared to encryption time without
proposed framework for traditional approach.

For the TEXT file type, similar observations can be made:
• The proposed framework significantly reduced encryption

time for a 1MB file to 0.004 seconds, compared to the
1.434 seconds with traditional approach.

• As the file size expanded, encryption times escalated both
with and without proposed framework. For instance, a
10MB file required 0.020 seconds with proposed frame-
work and 1.487 seconds without.

• Consistently, the proposed framework demonstrated a
quicker encryption process compared to the framework
not utilizing the proposed method in traditional approach.

It is evident from the results that the TEXT and CSV files
of the same sizes almost take similar time in both with and
without proposed framework. However, a small difference in
time could be seen between TEXT and CSV files of specific
size due to the text complexity, punctuation, white spaces, and
special characters of TEXT files.

IV. CONCLUSION & FUTURE WORK

The proposed framework presents an effective solution for
enhancing data transfer efficiency in multi-cloud ecosystems.
The empirical results corroborate that employing proposed
framework within a multi-cloud storage service optimizes
data transfer efficiency. This framework further leverages edge
and fog computing paradigms, utilizing parallelization, data
compression, data slicing, and encryption strategies to am-
plify overall system efficiency. These techniques substantially
alleviate the burden on the data owner’s end, enabling more
streamlined operations and facilitating swifter data transfer.
Moreover, proposed framework effectively addresses latency
issues by offloading computational overhead to the edge and
fog computing layers, thereby reducing network congestion
and improving data flow. The incorporation of parallelization
strategies distinctly augments data transfer speed, reinforcing
the potential of proposed framework as a practical and efficient
solution for enhancing data transfer efficiency in the evolving
landscape of multi-cloud storage systems. The cumulative
impact of these strategies not only streamlines the data transfer
process but also underpins a more robust, secure, and efficient
multi-cloud system, paving the way for future developments
in cloud computing and data management. In the future,
we would like to improve the compression abilities by also
considering the concept of compression ratio in the framework.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon Europe research and
innovation programme under Grant Agreement No. 101100680
(GN5-1), and also by grants from Science Foundation Ireland

under Grant Numbers 16/RC/3918 and 12/RC/2289 P2. For
the purpose of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted Manuscript
version arising from this submission.

REFERENCES

[1] S. Vinoth, H. L. Vemula, B. Haralayya, P. Mamgain, M. F. Hasan, and
M. Naved, “Application of cloud computing in banking and e-commerce
and related security threats,” Materials Today: Proceedings, vol. 51,
pp. 2172–2175, 2022.

[2] J. Weinman, Cloudonomics+ Website: The Business Value of Cloud
Computing. Wiley Online Library, 2023.

[3] S. Bharany, K. Kaur, S. Badotra, S. Rani, Kavita, M. Wozniak, J. Shafi,
and M. F. Ijaz, “Efficient middleware for the portability of paas services
consuming applications among heterogeneous clouds,” Sensors, vol. 22,
no. 13, p. 5013, 2022.

[4] P. Verma, S. Tapaswi, and W. W. Godfrey, “A request aware module
using cs-idr to reduce vm level collateral damages caused by ddos attack
in cloud environment,” Cluster Computing, pp. 1–17, 2021.

[5] M. Ciavotta, G. P. Gibilisco, D. Ardagna, E. Di Nitto, M. Lattuada,
and M. A. A. da Silva, “Architectural design of cloud applications: A
performance-aware cost minimization approach,” IEEE Transactions on
Cloud Computing, vol. 10, no. 3, pp. 1571–1591, 2020.

[6] D. L. Frink and B. K. Clore, “Customized memory modules in multi-
tenant provider systems,” Nov. 22 2022. US Patent 11,509,711.

[7] M. Vukolić, “The byzantine empire in the intercloud,” ACM Sigact News,
vol. 41, no. 3, pp. 105–111, 2010.

[8] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky:
dependable and secure storage in a cloud-of-clouds,” Acm transactions
on storage (tos), vol. 9, no. 4, pp. 1–33, 2013.

[9] H. C. Chen, Y. Hu, P. P. Lee, and Y. Tang, “Nccloud: A network-
coding-based storage system in a cloud-of-clouds,” IEEE Transactions
on computers, vol. 63, no. 1, pp. 31–44, 2013.

[10] M. Sohal, S. Bharany, S. Sharma, M. S. Maashi, and M. Aljebreen, “A
hybrid multi-cloud framework using the ibbe key management system
for securing data storage,” Sustainability, vol. 14, no. 20, p. 13561, 2022.

[11] D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny,
F. D’Andria, G. Casale, P. Matthews, C.-S. Nechifor, D. Petcu, et al.,
“Modaclouds: A model-driven approach for the design and execution of
applications on multiple clouds,” in 2012 4th International Workshop on
Modeling in Software Engineering (MISE), pp. 50–56, IEEE, 2012.

[12] P. Xu, X. Liu, Z. Sheng, X. Shan, and K. Shuang, “Ssds-mc: slice-
based secure data storage in multi-cloud environment,” in 2015 11th
International Conference on Heterogeneous Networking for Quality,
Reliability, Security and Robustness (QSHINE), pp. 304–309, IEEE,
2015.

[13] Y. Iqbal, M. F. Amjad, F. Khan, and H. Abbas, “The implementation of
encryption algorithms in mqtt protocol for iot constrained devices,” in
2022 14th International Conference on Computational Intelligence and
Communication Networks (CICN), pp. 804–810, 2022.

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on April 24,2024 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

