
1940 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 70, NO. 1, FEBRUARY 2024

Leveraging Gametic Heredity in Oversampling
Techniques to Handle Class Imbalance for Efficient

Cyberthreat Detection in IIoT
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Abstract—In recent years Cyber-Physical Systems (CPS) and
Industrial Internet of Things (IIoT) have gained significant
attraction; however, it remains a vulnerable target for cyber-
attacks. Machine learning techniques have garnered interest in
security applications due to their rapid processing capabilities
and real-time predictions. However, imbalanced data distribution
is a prevalent issue in IIoT environments, adversely affecting ML-
based attack detection systems. In this work, we present a novel
gametic heredity-based oversampling technique for addressing
imbalanced data challenges in cybersecurity applications, specif-
ically targeting IIoT systems. The proposed model enhances
diversity in the minority classes by generating unique synthetic
minority samples, creating diverse synthetic data while restrict-
ing instances to the minority class region. The proposed model
outperforms complex and conventional methods in terms of
precision, recall & F-Score while mitigating over-generalization
by evenly distributing newly generated samples within minority
class boundaries and regions. To validate the proposed model and
verify its efficacy in identifying cyber threats, we used the UNSW-
NB15 dataset. Simulation results demonstrate that the proposed
model efficiently detects attacks with high performance compared
to state-of-the-art techniques. Our research contributes to devel-
oping robust & efficient machine learning models for enhancing
the security of IIoT systems while handling class imbalance
issues.

Index Terms—IIoT, CPS, cyber threats, imbalance data,
oversampling, machine learning.

I. INTRODUCTION

THE RAPID development and integration of the Industrial
Internet of Things (IIoT) have revolutionized the man-

ufacturing and automation industries, driving efficiency,
productivity, and cost savings. However, the widespread adop-
tion of these interconnected systems has also increased their
vulnerability to cyber threats. Cybercriminals are continually
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devising sophisticated attack strategies, targeting IIoT to cause
disruption, data breaches, and damage to critical assets. Hence,
there is a growing need to develop robust & efficient methods
for detecting and mitigating cyber threats.

Machine Learning (ML) and Deep Learning (DL) approach
shows promise to detect cyber threats in IIoT and Industrial
Control Systems (ICS) environments. However, these tech-
niques face challenges while encountering imbalanced
data [1], a common issue in the context of cybersecurity.
In realistic scenarios, the amount of normal (benign) data
instances is typically higher than the attacks (malicious)
instances, leading to a skewed distribution [2]. This imbalance
could significantly affect the ML and DL model performance,
due to biasing towards majority instances (i.e., normal data
points) and resulting in poor detection of cyber threats [3].
Because these algorithms usually consider datasets having
equal classes [4], [5].

Handling imbalanced data is a critical aspect of devel-
oping effective ML models for cybersecurity applications,
especially in the context of IIoT and ICS. Several tech-
niques and methodologies are developed to tackle the data
imbalance problem, including data preprocessing techniques,
algorithm-based techniques, and cost-sensitive learning meth-
ods [6], [7]. Data preprocessing methods, such as oversam-
pling and undersampling, modify the dataset before training
the model. Oversampling, in particular, produces synthetic
data for the minority class instances, potentially improv-
ing the model’s performance in detecting cyber threats. The
majority of data sampling techniques used till date are syn-
thetic in nature [8], [9], [10], [11]. The Synthetic Minority
Oversampling Technique (SMOTE) [8] is well-known among
them, which intelligently introduces fresh synthetic or new
data instances to the class having low samples. Whereas
algorithm-based techniques modify the learning algorithm
itself, and cost-sensitive learning methods assign additional
misclassification costs to the minority and majority classes [7].

Oversampling techniques offer several advantages over
other approaches for handling imbalanced data in cybersecu-
rity applications. They enable the model to understand the
characteristics of the minority class instances in a better way
and are universally applicable to any dataset.

However, while oversampling techniques like SMOTE
and Adaptive Synthetic (ADASYN) improves classifier
performance in imbalanced data scenarios, but there are some
issues associated with their use. According to Barua et al. [11],
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these synthetic methods can unanimously enlarge the minority
class region, leading to the misclassification of majority class
samples. This occurs as synthetic instances are sometimes
introduced into majority-class regions. Additionally, these
approaches may generate non-diverse and large amounts of
similar data samples, as they undertake only nearest-neighbor
samples.

In summary, while oversampling techniques have shown
promise in addressing imbalanced data issues, they still have
some limitations. Erroneous enlargement of the minority class
region, generation of non-diverse data samples, data sam-
ple duplication and increased false alarm rates are some of
the challenges associated with these methods. It’s crucial to
cautiously consider the trade-offs and pick the most appro-
priate method for handling imbalanced data in cybersecurity
applications.

In this paper, we proposed a novel genetics-based over-
sampling method that achieves high precision and recall with
low false positives. In the proposed approach for the minor-
ity attack samples, clusters are created using the Gaussian
mixture model. Then within the cluster, the gametic hered-
itical oversampling technique which is inspired by the field
of genetics biology for producing synthetic data samples
is applied. The generated samples are unique and not the
copy of old samples but lie within the boundary of the
class. The significant contributions of this paper are described
as:

1) A novel gametic heredity based oversampling technique
inspired by the field of genetics biology is proposed to
enhance the cyberthreat detection in IIoT. The proposed
model is capable to deal with imbalanced data situa-
tions as well, thereby providing more robust and secure
architecture.

2) Our proposed model enhances the diversity within the
minority class by generating unique synthetic minority
samples inspired by the diversity observed within pop-
ulations of humans or other living organisms despite
being of the same species. This approach creates as
much diverse synthetic data as possible while main-
taining the instances within the region of the minority
class.

3) By generating data instances from two dissimilar
instances, the proposed model ensures that overfitting
is avoided as it does not create duplicated samples and
stops the generation of new instances after balancing the
classes.

4) The proposed model demonstrates superior precision,
recall, and F-Score compared to other complex and
conventional methods while also addressing the over-
generalization problem for detecting cyber threats in
IIoT.

The rest of the paper is organized as: Section II presented
the related work, whereas Section III describes the the-
ory of inheritence and diversity and Section IV presents
the proposed approach. Section V discuss the result evalu-
ation and Section IV concludes the work and gives future
direction.

II. RELATED WORK

A. Intrusion Detection Systems

A significant amount of scrutinization and research to
achieve a network that is secure, using ML methods is done
in both academia and industry because of their high potential
benefits. The majority of traditional ML methods employed in
intrusion detection are grounded in supervised learning mod-
els [12], [13], [14]. Liang et al. [15] presents a data clustering
optimization model. Formally, it sorts data according to the
weighted distance and safety factor based on each node’s data
features properties and the priority threshold. Chang et al. [16]
explored the applicability of using the Forest-RI (Random
Input), a technique of Random Forest (RF) which uses fea-
ture selection, and combined it with an SVM to classify the
selected efficient attributes.

Bhattacharya et al. [17] devised a model that firstly employs
a hybrid PCA-firefly algorithm to reduce data dimensions
before using the XGBoost algorithm for the classification of
the reduced data. After the introduction of DL theory, its
excellent feature learning capabilities have attracted significant
attention from researchers. As a result, several scholars have
started incorporating DL methods for intrusion detection [18],
[19], [20]. Shone et al. [21] put forth a non-symmetric
deep autoencoder (NDAE) for feature learning and created
a new classification model by integrating NDAE with the RF
classifier in a unsupervised way.

However, existing Intrusion Detection Systems (IDS) face
challenges when handling class imbalance in IIoT environ-
ments. Imbalanced data could tend to build models that
prioritize majority classes, resulting in decreased detection
rates of cyber threats. This issue also causes increased false
alarms, inefficient resource allocation, and reduced overall
security. Additionally, traditional performance metrics may not
accurately reflect the model’s capability to detect threats, &
the model may struggle to adapt to different or emerging cyber
threats due to insufficient minority class representation.

B. Data Imbalance Processing Methods

As stated in the beginning, this paper handles the issue of
the class imbalance problem. In the context of cyber threat
detection for IIoT, researchers have focused on tackling the
class imbalance problem to increase the performance of ML
models in detecting cyber threats. The solutions for data imbal-
ance problems in cyber threat detection for IIoT are majorly
classified as data based techniques, algorithm based technique,
and cost-sensitive learning based techniques [22], [23]. Several
studies have investigated the application of oversampling,
undersampling, and hybrid resampling techniques to balance
the class distribution in IIoT intrusion detection datasets. By
modifying the representation of minority and majority classes,
these techniques could enhance the performance of ML models
in detecting cyber threats in IIoT environments.

In addressing the class imbalance scenario, the most
straightforward technique is random oversampling. This
method entails selecting minority samples at random and
duplicating them until a desired size is reached. However, this
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can result in overfitting due to the strong similarities between
original and duplicated instances. To tackle this challenge,
Chawla et al. introduced the Synthetic Minority Oversampling
Technique [8], which generates synthetic samples between
randomly chosen minority instances and their NN-nearest
neighbors, where NN is determined by the user. Despite its
advantages, SMOTE may lead to over-generalization, as it
generates new instances not taking majority instances into
account, thereby increasing the overlap between classes [24],
[25], [26]. This issue can become more pronounced in datasets
with high imbalance ratios, as sparse minority instances may
end up within the majority class after oversampling, further
impairing overall performance [27].

Several methods are developed for overcoming over-
generalization. One approach, Safe-level SMOTE [28], cal-
culates a “safe-level” value for each minority class and
synthesizes samples nearer to the largest safe level. This safe-
level value is determined by the amount of minority samples
among its nearest neighbors. However, this method may result
in overfitting since synthetic samples are created further away
from the decision boundary.

Another approach, Borderline-SMOTE (B.SMOTE) [10],
finds the boundary in-between the two classes and focuses
on oversampling of the samples which exists close to the
boundary line. In contrast, ADASYN [9] focuses on the
minority class by generating synthetic samples based on their
density distribution. ADASYN adaptively generates more syn-
thetic examples for the minority class in regions with fewer
instances, effectively balancing the dataset. However, both the
techniques may not detect all minority samples in proximity
within the boundary of decision.

Alternative sampling methods involve the use of clusters
to segment the dataset before applying any sampling strat-
egy. Barua et al. [11] presents a technique called Majority
Weighted Minority Oversampling Technique (MWMOTE),
that partitions data with the help of clustering before employ-
ing the Euclidean distance similarity to get closely related
class instances. Synthetic instances are then produced depend-
ing on weights allocated for minority class instances. Various
researchers showed a preference for oversampling instead of
under-sampling [29], [30], [31], as under-sampling eliminates
class samples and may lead to the loss of essential information
necessary for constructing an efficient predictive model. Thus,
undersampling is ruled out from this study.

While our methodology is also developed on synthetic data
generation, it distinguishes itself by creating diverse data sam-
ples. In comparison to other methods that generate new data
instances from highly similar parent samples according to their
similarity distance measure values, proposed model creates
different data samples originating with help of 2 distinct parent
instances.

III. THEORY OF INHERITANCE AND DIVERSITY

Genes, the fundamental building block of heredity, are
thought to be located in chromosomes and are transferred
equally to offspring from each parent after the fertilization
of the gametes (egg and sperm). Sutton [32] proposed this

theory in 1902 and is known as the Chromosomal Theory
of Inheritance (CTI). According to the hypothesis, new kids
inherit 50% of each parent’s chromosomes, making them both
identical to and different from both parents at the same time.
The sex (or gender) of the species is crucial for maintain-
ing diversity within species because it aids in choosing two
opposing members that can procreate. Two unique groups of
chromosomes population S = (s1; s2; s3;. . .;sr) and T = (t1; t2;
t3;. . .;tr) are generated with same size r. Every chromosome Z
= (zj1; zj2; zj3;. . .;zjp) represents a d-dimensional vector com-
prised of genes, where zjk is the kth gene value (k = 1; 2;. . .;
d) of the jth chromosome (j = 1; 2;. . .; p) in each of the pop-
ulation. Two chromosomes, one from each set, are united to
create a new offspring, with every parent randomly provid-
ing half of the genes the offspring would inherit. Researchers
have used CTI to solve problems in different domains such
as agriculture and animal research as well [33], [34]. An
unbalanced defect dataset is subjected to the basic princi-
ples of selective animal and plant mating for generating more
data instances of defective instances. Methods including out-
crossing, inbreeding, and line-breeding [35] were employed in
selective breeding to separate the pool of animals and plants.
Similarly to this, by taking into account a similarity metric
to help us separate our data samples, we can logically over-
sample the minority groups. In order to create new samples,
we plan to develop an oversampling method based on the
CTI and the partitioning approach that can combine various
samples to create synthetic data samples which are as unique
from their producers as possible & add to the diversity of
the minority class distribution. This method will be able to
identify minority defective samples and examine their sample
defects.

IV. PROPOSED APPROACH

We exploited the challenge of using the chromosomal the-
ory of inheritance for generating synthetic data using the
Gaussian clustering-based gametic oversampling technique.
Taking Walter Sutton’s theory [32] into consideration we used
the features of the attack dataset as the chromosomes of the
parents taking part in the reproduction mechanism for generat-
ing diverse instances of data. We aim to produce new minority
instances of attack labels that inherit the features from two dif-
ferent data instances. These features produced are also unique
and not a copy of the existing sample.

Based upon the same attack label of two data samples,
the child class is produced that will have the same attack
label as its parents. The basic intuition behind this could be
explained with an example as, let’s say both the male and
female have brown iris then the chances of their child having
brown iris are high as compared to having blue, black, or green
iris. Such a concept is known as inheritance, as explained in
Walter Sutton’s chromosomal theory of Inheritance [32]. The
proposed approach seeks to produce synthetic data that has
both unique and common features with the help of three fun-
damental phases. The overall proposed approach is shown in
Figure 1 and a list of all notations used in the proposed model
is shown in Table I.
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Fig. 1. Block diagram of proposed approach.

Before generating the synthetic instances for the minority
dataset, data pre-processing is applied to the complete dataset.
As a part of this phase, the feature selection technique is also
applied to the preprocessed dataset to reduce the overall num-
ber of attributes of the dataset. After feature selection comes
to the outlier detection step using Isolation Forest. Then, the
preprocessed data is divided into train and test sub-datasets. In
the second phase, the minority samples of the training dataset
are divided into various clusters based on the clustering algo-
rithm. The idea behind clustering is to increase the accuracy
of the offspring falling into the vicinity of its parent.

As a part of the third Phase, Mahalanobis Distance (MD)
says Mq for every data sample of cluster Ci is calculated. The
data samples are then arranged in descending order based on
their MDs. Then, the data samples of the cluster Ci are halved
into upper and lower segments from its midpoint. The data
elements of the upper and lower sections are arranged in a

specific order (either ascending or descending) based on their
attack label. In the last step, the parents with the same attack
label are chosen from upper and lower segments respectively
to breed and produce offspring which fall into the same class
label as their parents. The breeding part includes taking the
average of the feature values of its parents to get the features
of the child. Algorithm 1 describes the entire process of the
proposed oversampling technique.

A. Phase 1: Data Pre-Processing and Dimensionality
Reduction

In data pre-processing, we applied, label encoding to con-
vert categorical data into numeric and Min-Max Scaling
to bring the data in one range. Then further we applied
dimensionality reduction to the pre-processed data. Since, for
effective clustering lower number of features works well so,



1944 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 70, NO. 1, FEBRUARY 2024

Algorithm 1 Gaussian Clustering-Based Gametic Hereditical
Oversampling Technique
Input value: An Imbalanced Dataset DI

Output value: A Balanced Dataset DB

1: Use label encoder to add a label to the dataset;
2: DI.new_features = PCA.fit(DI.features), as mentioned in

Algorithm 2;
3: (DTrain and DTest) = train-test-split(DI);
4: Now in DTrain:

if y[i] = attack_label then
Attack_D.append(DTrain.iloc[i,:]),
where i = {0....len(DTrain)}

5: Define k = best of Silhouette Score(Attack_D) to get the
number of clusters, as mentioned in Algorithm 3

6: Create cluster Cj = GMM(Attack_D,k) as described in
Phase 2

Cj= jth cluster, j ∈ {0,1,2...,k−1} & k ≈ l (for best
results)

l is the total number of attack labels
7: Initialize total_count=0 & required_count = no. of attack

label needed to balance dataset
8: In a cluster Cj, for each data point Cjq, obtain Mahalanobis

distance (M2
q)

(M2
q) = (Cjq − μ)′�−1(Cjq − μ)

Where Cjq = Object vector, j = cluster no. ∈
{0, 1, 2 ..., k−1},

q = row or data point of Cj, μ = mean vector, �−1

= covariance matrix
9: Sort Cjq according to M2

q value in decreasing order
10: Say, mid = length (Cj)/2,

Divide (Cj) into upper and lower divisions as
Xu = (Cj).elements from [0 to mid]
Xl = (Cj).elements from [mid to length (Cj)]

11: Sort Xl and Xu on basis of attack labels.
12: Synthetic Data (SD)j = SDG (Xl and Xu)

total_count = total_count + len((SD)j)

13: If total_count < required_count
repeat steps 7 to 11 for the remaining clusters

14: Else;
End

we applied principal component analysis (PCA) on the scaled
data to reduce its number of features. But due to the human
factor of assigning the number of components and reducing
the human error a method called permutation test is used on
the mined dataset to identify the true number of features that
could effectively represent the whole features of the dataset.
After gathering the number of attributes, we applied PCA to
the dataset, described in Algorithm 2.

Let Wij be the weight of feature j giving PCA feature i
Pij = Wi1x1 +Wi2x2 + . . . Winxn

i = {0, 1, 2, . . . f1}
where f1 = Optimum no. of features and P is the principal
components

j = {0, 1, 2, . . . dt}.
The next step is to remove the outliers, so we opted for

an isolation forest to remove the outliers from dataset. Then

Algorithm 2 Permutation Test and PCA for Feature Selection
Input: Preprocessed data DI with n no. of features
Output: Reduced feature dataset

1: Define N as no. of permutation and correlation dataset;
(i) X_aux = data.copy()
(ii) For each Column in data.column
X_aux[col] = data[col].samples(len(DI)).value
(iii) return X_aux

2: Run PCA for DI and save variance by each Pi

3: Plot a graphical view for analysis of explained variance
v/s permuted versions

4: The knee point in the plot would be the desired number
of features ‘f1’

5: DI = PCA(DI, f1)
6: Return DI

TABLE I
MEANING AND NOTATIONS

on the reduced and pre-processed dataset, train-test-split is
applied to divide data into train and test datasets. The training
data is again scrutinized for separating the majority & minority
classes. Here, minority class generally falls under the criterion
of attack. The data samples of these classes are separated from
the majority class and are sent to the next step for synthetic
data generation.

B. Phase 2: Clustering

Clustering is an unsupervised learning methodology used
to split the data into clusters (say groups) to classify them
uniquely. In a broad sense, the cluster is a collection of data
instances which share more similarities with each other than
with those in different clusters. Before performing oversam-
pling in our data, we are interested in creating clusters of attack
data representing the minority class to oversample.

We preferred the Gaussian clustering method over k-means
clustering as k-means relies on distance measures to assign
data points to clusters, resulting in circular-shaped clusters.
This occurs as the cluster centroids are iteratively updated
using the mean value. Circular shape of clusters makes this
technique less effective when applied to datasets where the
attack data may not be distributed in a circular pattern. If
the data points form a non-circular pattern, K-means would
struggle to identify the correct clusters, and consequently, the
accuracy of the synthetic data would be compromised due to
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Fig. 2. Cluster creation using (a) KMeans (b) GMM.

Algorithm 3 Silhouette Scores
Input: Reduced feature Dataset Dt

Output: ‘k’ Number of clusters to be created

1: Initialize silhouette.score = []
2: For i in range (l+2), where l is no. of attack labels

gmm = gaussian_mixture(n_component = i,n_init =
50 (say), init_param = Kmeans++)

gmm.fit(Dt)

Silhouette_score.append(Silhouette_score(Dt),
gmm.predict(Dt))

3: Plot Silhouette_score v/s i graph
4: Return max[Silhouette_score] ←− ith value

this inefficiency. Figure 2 shows the creation of a cluster using
k-means and GMM.

In this work, the silhouette measure (or silhouette coeffi-
cient) is employed to determine the quality of clustering and to
evaluate the optimal number of clusters ‘k’ for a given dataset
as mentioned in Algorithm 3. It provides a way to measure
how effectively every data point is assigned to its respective
cluster by taking into account both the cohesion within the
cluster and the separation between different clusters. Silhouette
coefficient is formulated as:

Si = bi − ai

max(ai, bi)
(1)

where,
bi = min. average distance from the ith point to points in
different cluster,
ai = average distance from ith point to other points within
same cluster.

The silhouette coefficient ranges from −1 to 1. Its values
close to 1 indicates a high quality clustering assignment, values
near 0 imply that the data point could belong to either its
current cluster or a neighboring cluster, and negative values
suggest that the data point could have been assigned to the
incorrect cluster.

After getting the number of clusters ‘k’, Gaussian Mixture
Model (GMM) is used to assign elements to the clusters. With

GMM each cluster is represented by a Gaussian distribution.
GMM estimates the parameters of these Gaussian distribu-
tions and assigns data instances to clusters depending on their
probability of belonging to each distribution.

When implementing GMM to cluster, the goal is to partition
the data into groups or clusters, where every cluster is depicted
by a Gaussian distribution. The steps for creating clusters using
GMM are as follows:

1) Initialization: Select the ‘k’ number of clusters (given
by Silhouette Score) for the dataset. Initialize the parameters
of the Gaussian distributions (means μi, covariance matri-
ces �i) and the mixing coefficients wi using K-means++
initialization.

2) Expectation Step (E-Step): Given the current estimates of
parameters, calculate the probabilities of all data points hailing
to every Gaussian distribution using Bayes’ theorem:

P(zi = k|xn) = (wk ∗ N(xn;μk, �k))

�
(
wj ∗ N

(
xn;μj, �j

)) (2)

where:
zi is cluster assignment of data instance xn, P(zi = k|xn) repre-
sents the probability that xn belongs to cluster k. N(xn;μk, �k)

is the Gaussian distribution with mean μk and covariance
matrix �k for cluster k. wk is the mixing coefficient for cluster
k. The summation is over all clusters (j = 1, 2, . . . , K).

3) Maximization Step (M-Step): Update the estimates of the
Gaussian parameters (μ,�) and the mixing coefficients (w)

based on the probabilities computed in the E-step:

μk = (�P(zi = k|xn) ∗ xn)

(�P(zi = k|xn))
(3)

�k =
(
�P(zi = k|xn) ∗ (xn − μk)(xn − μk)

′)

(�P(zi = k|xn))
(4)

wk = (�P(zi = k|xn))

N
(5)

where, the summations are over all data points (n =
1, 2, . . . , N). N is the total no. of data points in the dataset.

4) Convergence Step: Repeat steps 2 (E-step) and 3 (M-step)
until the GMM parameters (μ,�, w) converge or a stopping
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Algorithm 4 Synthetic Data Generation (SDG)
Input: Xl and Xu and the required count
Output: Synthetic data for minority samples

1: Initialize i = 0, j = 0, check = 0
2: X_new = []
3: While check < required_count and i < len(Xl) and j <

len(Xu)

if j ≥ len (Xl)

j = 0
i+=1
if label(Xl)i = label(Xu)j

feature_of_child = average(Xl_feature, Xu_feature)

check+=1
X_new.append(feature_of_child)
else
j+=1

4: Return X_new

criterion is matched (e.g., a max. no. of iterations or a min.
change in the log-likelihood).

5) Cluster Assignment: After convergence, add every data
point to a cluster with the highest probability:

cluster(xn) = argmaxkP(zi = k|xn). (6)

C. Phase 3: Synthetic Data Generation

First, we calculate the MD and sort data points of cluster Ci

in descending order based on MD. Then we divide the sorted
data samples of cluster Ci from the previous step into two
groups Xl and Xu by identifying a mid-value, which is half of
the total number of points in the cluster. After several iterations
of simulation trials, using the upper half and lower half yields
the best and most universal outcome of synthetic data. This
strategy still functions even when we have just a less number
of attack samples. We think that using two parents is practical
and is in favor of inheritance theory. One partition say Xu is
made up of all data samples with MD greater than or equal to
the center data point, and the second partition say Xl is made
up of all other data samples. Samples are progressively tagged
and then paired within the two partitions. To actively iden-
tify 2 separate examples from both segments which have been
methodologically and symmetrically matched as “parents” are
taken from Xl and Xu with the same attack category. Before
the pairing process, the data sample in each upper and lower
half are again sorted on the basis of their attack label. The
pairing is then carried out sequentially using SDG, described
in Algorithm 4. These parents can be recognized by the “attack
labels” they have. This is done to make sure that there are no
samples that overlap and that the resulting samples created by
the partitioning process are located inside the cluster decision
boundary. The child, hence produced, is generated by taking
the average value from the feature values of parents.

The decision to use MD instead of Euclidean distance (ED)
is motivated by the limitations of ED when dealing with cor-
related attribute data. MD, measures how far a point is from
its distribution (such as a cluster), is better suited for capturing
proximity information. By considering the diversity between

two data examples using MD, we can overcome drawbacks
associated with the Euclidean metric. ED fails to differentiate
strongly correlated or duplicate samples, impeding the clas-
sifier training process. MD, with its unitless nature, provides
a relative measurement of sample distance from a reference
point, facilitating outlier detection and similarity identifica-
tion between known and unknown datasets. MD accounts for
correlation and scale, making it a robust measure. To address
scale and correlation concerns in ED, covariance within the
data instances is also taken into consideration during distance
calculation.

The mathematical term for the same is:

M2
q = (x− m)T .C−1.(x− m) (7)

where M2
q denotes the squared MD, the mean of independent

variables is represented by m, x represents the data samples,
and C−1 denotes the inverse covariance matrix of independent
variables.

Considering two samples of the defective class x =
(x1, x2, . . . , xn)

T and y = (y1, y2, . . . , yn)
T , the MD is eval-

uated as;

Mq(x, y) =
√

(x− y)TS−1(x− y) (8)

where S−1 is the covariance matrices. By aggregating and
calculating the average of two paired samples from both par-
titions, new data is generated which is then added to the data
X_new, known as the final phase of the proposed model.

V. EXPERIMENT AND ANALYSIS

A. Dataset Used

For experimental validation, we employ the widely recog-
nized UNSW-NB15 [36] dataset which is majorly utilized in
the field of attack detection. It has been extensively used in
research & provides a diverse range of network traffic sce-
narios to evaluate the efficiency of attack detection systems.
UNSW-NB15 dataset is also highly imbalanced in nature thus
it is also used to evaluate the solutions for the imbalance data
problem in network intrusion detection systems. The dataset
was created to simulate real-world network traffic scenarios.
The dataset comprises network traffic data collected in a con-
trolled environment, including both benign and nine types of
attacks with 49 features with the class label. It serves as a
valuable resource to evaluate and develop intrusion detection
systems in diverse network environments.

B. Evaluation Metrics

When evaluating an intrusion detection approach, several
metrics are commonly used to assess its performance. These
metrics provide insights into the efficacy of the approach
in detecting and classifying intrusions. Some of the key
metrics used for evaluating intrusion detection approaches
include accuracy, recall, precision, F-Score, Area Under Curve
(AUC), and False Positive Rate (FPR). Accuracy measures
the overall correctness of the intrusion detection approach
for classifying attack and normal samples. Precision presents
the ratio of correctly classified attack requests over total
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samples classified as an attack. Recall (or Sensitivity or True
Positive Rate) represents the correctly classified attack over
actual attack samples. F-Score gives the harmonic mean of
precision and recall, which provides a balanced measure of
both metrics. AUC quantifies the model’s ability to discrim-
inate between positive and negative instances across various
threshold settings, providing an overall performance measure.
FPR represents the incorrect prediction of attack samples.

Accuracy = w+ x

w+ x+ y+ z
(9)

Precision = w

w+ y
(10)

Recall(TPR) = w

w+ z
(11)

F − Score = 2 ∗ Precision ∗ Recall

Precision+ Recall
(12)

FPR = y

y+ x
(13)

where w is true positive, x is true negative, y is false positive
and z is false negative respectively.

C. Experimentation Procedure

We used Keras1 and TensorFlow2 frameworks to develop
the model and conduct experimental testing. As described in
Section IV, the original data is processed from preprocessing
step, and then outlier detection is performed using an isolation
forest. On UNSW-NB15 label encoding is applied for categor-
ical data, making the data values numeric. Next, we used PCA
to reduce the dimensionality of the features. We determined the
number of PCA components to be used for feature selection
by testing the final classification effect of RF. The dimension
of data in the UNSW-NB15 data set initially was 47 (+2 of
output), and we reduced it to 14 features to be used.

In the proposed model-based oversampling, to identify the
number of clusters, the silhouette score method is used which
determined that 4 number of clusters suits best for attack
dataset. Then GMM was initialized with the parameters as
n_init = 50, init_params = kmeans + +, and reg_covar = 1
to create the clusters. Once the clusters are created then we cal-
culated MD between the data points within each cluster. Next
every data value was arranged in descending order depending
on their calculated MD and the cluster was divided into upper
and lower half. Then the parents are chosen from the upper
and lower half with the same attack labels to generate the child
by averaging the parent’s feature values. After the oversam-
pling process, an RF classifier is applied for model training
on the combined dataset of old traces with newly generated
samples.

D. Analysis of Experimental Results

1) Results of Binary Classification: This section presents
the comparison of the proposed model for the classification
results of benign and attack instances on the UNSW-NB15

1https://keras.io/api/
2TensorFlow is an open-source library used in Python for deep learning

applications.

TABLE II
CLASSIFIERS AND THEIR CONFIGURATIONS

dataset. Table III shows the comparison of proposed with other
oversampling methods such as SMOTE, ADASYN, Random,
and Borderline SMOTE (B. SMOTE) on different classifiers
with Table II describing the configuration of each classifier.

The evaluation results for different sampling techniques
and classifiers in Table III show varying performance in the
context of attack detection.
• SMOTE: SMOTE generally performs well across the

evaluated classifiers, with high precision, recall, and
F-Scores. It effectively addresses the class imbalance
issue by generating synthetic samples, resulting in
improved detection of minority instances. The FPR is
relatively low, indicating a good balance between false
positives and true positives.

• ADASYN: ADASYN also demonstrates favorable
performance in terms of given performance metrics. It
assigns weights to minority instances based on their
neighborhood, resulting in more effective oversampling.
However, the performance of ADASYN is a bit lesser
than SMOTE in terms of precision and recall, particularly
for some classifiers.

• Random: Random oversampling demonstrates consis-
tent performance across various classifiers. However,
it carries the risk of overfitting as it generates simi-
lar instances. Nevertheless, this technique exhibits high
precision, recall, and F-Scores, highlighting its effective-
ness in enhancing the detection of positive instances.

• Borderline SMOTE: Borderline SMOTE performs well in
terms of given performance metrics. It focuses on gen-
erating synthetic instances along the borderline between
the two classes, improving the detection of minority class
instances. However, its performance is relatively lower
compared to SMOTE and ADASYN, particularly in terms
of precision and recall.

• Proposed: The proposed model outperforms other over-
sampling methods in terms of precision, recall, F-Score,
and AUC for most classifiers. It demonstrates superior
performance in handling the class imbalance issue, result-
ing in highly accurate and effective intrusion detection.

The proposed model shows promising results, indicating its
potential for enhancing the detection of cyber threats in the
context of IIoT.

Figure 3 shows that on the UNSW-NB15 data set, precision,
recall, and F-Score enhanced to 6%, 8%, and 7% respectively
in comparison to the existing technique achieving the highest
results. The high metrics of the proposed approach are owed
to the fact that the generated minority data is the subset of the
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TABLE III
EXPERIMENTAL RESULTS OF BINARY CLASSIFICATION ON DIFFERENT PERFORMANCE METRICS FOR UNSW-NB15 DATASET

BETWEEN PROPOSED AND OTHER OVERSAMPLING TECHNIQUES

Fig. 3. Comparison of results for binary classification.

original data. It is built upon the foundation that the produced
data should fall under the same cluster with its domain value
in the range of its parents. Here, the data values are generated
by considering the average of the values of its parent which
fall inside the parent dominion. A bold view in the Table III
indicates the outcome of the presented approach indicating
that the proposed model along with RF achieves 97.3% of
accuracy which is greater than the highest accuracy of 91.8%
shown by the random oversampling technique. Along with
accuracy proposed model achieved a 6% increased precision
over all existing techniques by showing a precision of 97.7%.
In addition to precision, a boost of 8% is achieved in recall
value with 99.1% being the actual number. Whereas F-Score
show a significant value of 98.1% with an increased value of
7% in comparison to the highest value of other oversampling
technique. These findings demonstrate the effectiveness of the
proposed model in detecting attacks, thereby enhancing the
security of the IIoT system against potential cyber threats.

Techniques like B. SMOTE, SMOTE, ADASYN, and ran-
dom oversampling are seen to perform lower to provide
accurate synthetic data in comparison to proposed model. This
accounts for various facts such as in the case of SMOTE and
random oversampling, they may generate samples that might
not actually represent the underlying distribution and introduce
noise in the dataset [11]. Randomly duplicating samples leads
to dilution of the unique existing patterns of the dataset [11],
whereas in the case of B.SMOTE, it may generate compar-
atively better samples than SMOTE and random technique
but the process of selection of correct borderline samples for
oversampling adds challenges to it and incorrect selection of
such leads of suboptimal performance. Also, the challenges
in estimating the density distribution ratio between majority
and minority classes account for the suboptimal performance
of ADASYN in comparison to the proposed model. Since the
data samples are generated based on the specificity of data
points within each cluster, it easily handles the concept of
density distribution, no borderline samples need to be selected
thus reducing the noise in the dataset as compared to SMOTE
and allowing the system to preserve its nature making it less
prone to dilution.

2) Multiclass Classification Results: Handling multiclass
classification is a bit more arduous than binary. As in the case
of multiclass the imbalance ratio gradually tends to increase
in comparison to binary data values.

Table IV presents the results for multi-class classification of
proposed oversampling in comparison to classification with-
out oversampling (original) on selected features using PCA
and RF as classifiers. Unlike binary classification, multi-
class classification involves more complex data, often with
potential class overlaps among different pairs of classes. This
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TABLE IV
COMPARISON OF RESULTS FOR MULTI-CLASSIFICATION OF ATTACK

CATEGORY IN UNSW-NB15 WITH AND WITHOUT PROPOSED MODEL

Fig. 4. Precision comparison for multi-classification on UNSW-NB15 dataset.

complexity poses additional challenges in accurately classi-
fying instances into multiple categories. Results show that
the proposed oversampling technique achieved good results in
comparison to the original approach where no oversampling
is performed.

Further, the proposed model is also compared with other
states of art oversampling methods against precision, recall,
and F-Score for the multi-classification of different attacks
present in the UNSW-NB15 dataset. Figure 4 shows that the
proposed model consistently outperforms the other sampling
techniques across 8 out of 10 classes. It achieves higher
precision values for all classes except for classes A and J.
Similarly, recall of the proposed model outperforms the other
sampling techniques across 7 out of 10 classes and 8 out of 10
classes for F-Score as shown in Figure 5 and 6 respectively.

This indicates that the proposed model improves the
precision, recall, and F-Score of the minority classes and is
effective in accurately detecting instances from these classes.
The proposed model is effective for detecting attack samples
of classes even with low training samples, thus securing the
IIoT from these rare cyber threats as well.

Similarly, among the other sampling techniques, Random,
SMOTE, ADASYN, and B SMOTE show varying levels of
improvement compared to the no oversampling (original).
Here, to maintain the same level of comparison, the actual
imbalanced dataset is passed through PCA to generate the
dataset with the reduced number of features and then used RF
as for classification purposes. However, their precision, recall,
and F-Score values are generally lower than those achieved by

Fig. 5. Recall comparison for multi-classification on UNSW-NB15 dataset.

Fig. 6. F-Score comparison for multi-classification on UNSW-NB15 dataset.

Fig. 7. Comparison of Mean results for multi-classification on UNSW-NB15
dataset.

proposed, indicating that the proposed model provides better
precision for most classes.

It’s worth noting that the performance of the different tech-
niques varies across the classes. Some techniques may perform
better for certain classes while underperforming for others.
This suggests the importance of selecting an appropriate sam-
pling technique based on the specific class characteristics and
the desired performance.

Figure 7 presents a comparison of mean results for multi-
class classification on the UNSW-NB15 dataset. The proposed
method shows substantial improvement in all metrics. It
achieves the best results for average recall, precision, and
F-Score among all the techniques, indicating its effectiveness
in detecting instances from multiple classes accurately.
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Among the other sampling techniques, SMOTE, ADASYN,
and B.SMOTE demonstrate relatively better performance com-
pared to the original dataset but still, fall short when compared
to the proposed method. The random oversampling technique
shows the lowest performance among all the techniques. The
better performance of the proposed model accounts here for
the fact that the proposed technique uniquely focuses on the
specific classes and tries to produce an exact amount of sam-
ples of them to make them balanced. These samples are
generated in such a way that they fall under the same space
or distribution thus making those samples closely similar to
their class.

Overall, the results highlight the superiority of the proposed
method in terms of average recall, precision, and F-Score, sug-
gesting its potential to enhance multi-class intrusion detection
on the UNSW-NB15 dataset.

VI. CONCLUSION

Ensuring network security relies heavily on effective
intrusion detection. However, the presence of imbalanced data
poses a significant challenge to the performance of intru-
sion detection systems. Imbalanced learning, where one class
dominates the dataset, can lead to biased models and lower
accuracy in detecting intrusions. Therefore, addressing the
issue of imbalanced learning is crucial for enhancing the over-
all effectiveness of intrusion detection systems and enhancing
network security. This work proposed a gametic hereditical
oversampling technique that successfully tackles this challenge
by generating diverse synthetic minority instances inspired by
genetic biology principles. The evaluation using the UNSW-
NB15 dataset validates the effectiveness of the proposed model
in accurately detecting cyber threats, by achieving a high
precision value of 0.977, and recall value of 0.991, and an
F-Score value of 0.981. Importantly, the proposed model pre-
vents over-generalization by ensuring the spread of synthetic
samples remains within the boundaries of the minority class.
The superiority of the proposed model over conventional meth-
ods highlights its potential for developing robust and efficient
machine-learning models that enhance the security of IIoT
systems. It enhances the precision, recall, and F-Score values
by 6%, 8%, and 7% respectively as compared with the con-
ventional methods, thus establishing its supremacy in securing
the IIoT from the cyber threats.

However, the limitation of the proposed approach is that
it would require a certain amount of samples of each class
to produce synthetic data belonging to that class. If all the
samples fall in either upper or in lower division of the class
then it would be difficult to produce new samples for that
specific class. In the future, we would work on improving
the proposed approach to focus more on individual attack
labels and try to address the above-mentioned limitation of
the proposed approach.
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