
Received 15 October 2023, accepted 20 November 2023, date of publication 28 November 2023,
date of current version 5 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3337658

Out-of-Distribution Data Generation for Fault
Detection and Diagnosis in Industrial Systems
JEFKINE KAFUNAH 1, PRIYANKA VERMA1, (Senior Member, IEEE),
MUHAMMAD INTIZAR ALI 2, AND JOHN G. BRESLIN 1, (Senior Member, IEEE)
1School of Engineering and the Data Science Institute, University of Galway, Galway, H91 TK33 Ireland
2School of Electronic Engineering, Dublin City University, Dublin 9, Ireland

Corresponding author: Jefkine Kafunah (jefkine.kafunah@insight-centre.org)

This work was supported in part by the Grant from the Science Foundation Ireland under Grant 16/RC/3918 (Confirm), and in part by the
Grant from Science Foundation Ireland (SFI) under Grant 12/RC/2289_P2 (Insight).

ABSTRACT The emergence of Industry 4.0 has transformed modern-day factories into high-tech
industrial sites through rapid automation and increased access to real-time data. Deep learning approaches
possessing superior capabilities for intelligent, data-driven fault diagnosis have become critical in ensuring
process safety and reliability in these industrial sites. However, such applications trained exclusively
on in-distribution process data face challenges in the wake of previously unseen out-of-distribution
(OOD) data in the real world. This paper addresses the challenge of out-of-distribution data detection
for deep learning-based fault diagnosis models by generating synthetic data to simulate real-world
anomalies not present in the training set. We propose Manifold Guided Sampling (MGS), a data-driven
method for generating synthetic OOD samples from the in-distribution data-supporting manifold estimated
through a deep generative model. Synthetic data from MGS enhances the model capacity for prediction
uncertainty quantification, resulting in safe and reliable models for real-world industrial process monitoring.
Furthermore, the MGS algorithm maintains the in-distribution data feature space as a reference point during
data generation to ensure the resulting synthetic OOD data is realistic. We analyze the effectiveness of
MGS through experiments conducted on the steel plates faults dataset and demonstrate that augmenting
training data with synthetic data from MGS enhances the model performance in OOD detection tasks and
provides robustness against dataset distributional shifts. The findings underscore the effectiveness of utilizing
synthetic MGS-generated OOD data in scenarios where real-world OOD data is limited, enabling better
generalization and more reliable fault detection in practical applications.

INDEX TERMS Deep generative models, fault diagnosis, process monitoring, safety-critical, out-of-
distribution data, variational autoencoder, uncertainty estimation.

I. INTRODUCTION
Industry 4.0 (I4.0) has revolutionized modern-day factories
through rapid automation and increased access to real-time
data from complex industrial processes [1], [2], [3], [4], [5].
Central to the proliferation of industrial process datasets are
multitudes of integrated sensors that gather data, resulting
in large-scale, high-dimensional, and nonlinear historical
process data. The compiled datasets are the in-distribution
(ID) data representing some underlying industrial process.

The associate editor coordinating the review of this manuscript and
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Recently, data-driven fault diagnosis (FD) models trained on
large-scale industrial process datasets using deep learning
(DL) techniques have demonstrated the ability to deliver
actionable insights required to cope with the increasing
demands around safety, efficiency, and production quality [6],
[7], [8]. For DL-based FDmodels, the underlying assumption
is that the training and testing data are independent and
identically distributed.

However, during deployments in the real world, gradual
changes over time result in data distributional shifts and
the emergence of out-of-distribution (OOD) data [9], [10],
[11], [12], [13]. In industrial applications, exposure of
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data-collecting sensors to potentially harsh and variable
environmental conditions, physical shock or damage, excess
electrical noise, imprecise pre- and post-deployment sensor
calibration, sensor drifts, process parameter variations, and
changes in working conditions are some of the factors
commonly associated with data distributional shifts and the
emergence of OOD data [14], [15], [16], [17], [18], [19].

In recent years, DL algorithms have achieved state-of-
the-art (SOTA) performance in a broad range of tasks [20],
[21], [22], [23], leading to the integration of DL into
safety-critical tasks such as biometric identification [24],
medical diagnosis [25], and fully autonomous driving [26],
[27], [28]. Similar adoptions in manufacturing are increas-
ingly common, such as the uptake of deep neural networks
(DNNs) in FD as the preferred process monitoring approach
for complex industrial process data [8], [29]. Nonetheless,
current SOTA DL models are known to generate inaccurate
and overconfident predictions on OOD data, further degrad-
ing the performance of DL-based FD systems [30], [31],
[32], [33], [34]. Improving capacity for OOD detection is
crucial in safeguarding the DL-based FD models, especially
for safety-related systems where the consequences of wrong
predictions can be catastrophic, leading to the total shutdown
of entire operations, while in other cases, injuries or the loss
of life.

Data-driven DL-based FDmodels require a comprehensive
dataset with broad coverage of operating conditions and
fault scenarios to model the accurate system behavior during
training. Therefore, data quality and availability directly
affect the performance of DL-based FD models. Insufficient
training data, also known as data scarcity, affects DL-based
FD models by restricting the exploration of a comprehensive
data feature space, thus limiting the model’s ability to
learn the most informative and discriminative features
required for OOD detection tasks [35]. Data scarcity also
relates to the long-tailed distribution problem or imbalanced
dataset, common in safety-critical industrial systems where
actual fault scenarios are rare and hard to simulate. The
long-tailed distribution problem impacts the generalization
of DL-based FD models as they tend to perform well on
the dominant classes, unlike the less frequent classes [36],
[37]. DL-based FD models with poor generalization tend to
perform poorly in OOD detection tasks. The data scarcity
problem underscores the need for additional training data
to improve DL-based FD model generalization and capacity
for OOD detection. Furthermore, despite the effectiveness of
approaches such as Reverse KL-divergence Prior Networks
(RKL-PNs) [34], [38], Aleatoric Epistemic uncertainty
DNNs (AE-DNNs) [39], and Out-of-DIstribution detector
for Neural networks (ODIN) [40] in OOD detection, all
these approaches require access to realistic OOD data during
training.

This paper addresses the challenges of training data quality
and availability for data-driven DL-based FD systems by
generating synthetic OOD data that simulate real-world
anomalies not present in the training set. We aim to bridge the

FIGURE 1. Types of OOD data. Type 1A: classwise samples on the
intersecting regions of the manifold, Type 1B: classwise samples on
low-probability regions of the manifold, and Type 2: classwise samples
located in proximity regions outside the learned ID manifold.

gap in training DL-based FDmodels using SOTA approaches
such as RKL-PNs, AE-DNNs, and ODIN with additional
insight from the synthetic OOD data. Our research aims
to enhance the robustness of DL-based FD systems against
OOD data in real-world deployment scenarios.

We propose MGS, a data-driven method for generating
synthetic OOD data based on a deep generative model.
Implementation of MGS begins by training a variational
autoencoder (VAE) to obtain a learned ID data-supporting
manifold of the large-scale high-dimensional nonlinear
historical process data. From themanifold-related hypotheses
on high-dimensional data [41], [42], [43], [44], we observe
that samples existing in (i) the classwise intersecting regions
on the manifold, (ii) the classwise low-probability regions on
the manifold, and or (iii) regions located outside the learned
ID manifold; all represent regions from which we can obtain
OOD latent variables (see Fig. 1). Therefore, decoding the
OOD latent variables obtained from sampling the regions
of interest on the manifold generates a combined set of
OOD historical process data. MGS facilitates the generation
of realistic OOD samples that augment the original ID
training dataset. In particular, the availability of synthetic
OOD data enables us to train DL-based FD applications using
approaches similar to RKL-PNs and AE-DNNs. Throughout
the training process, a dual loss functionmerges two objective
functions using a convex combination that optimizes the ID
samples on the one hand and OOD samples on the other. The
resulting DL-based FDmodel offers the improved capacity to
handle complex real-world industrial environments through
enhanced performance on tasks such as OOD detection and
uncertainty estimation.

Based on our approach, we summarise our main
contributions as follows:
• We propose MGS, a data-driven method that gen-
erates synthetic OOD samples by leveraging an ID
data-supporting manifold estimated through a deep
generative model.

135062 VOLUME 11, 2023



J. Kafunah et al.: OOD Data Generation for Fault Detection and Diagnosis in Industrial Systems

• We improve the quality of synthetic OOD data by
learning disentangled OOD latent variables, perform-
ing targeted sampling from extremely low probability
regions on the manifold, and expanding the range of
angle choices for OOD latent variables outside the
manifold.

• We demonstrate that incorporating synthetic OOD data
from MGS improves the capacity for FD models to
detect OOD input data and estimate predictive uncer-
tainty, resulting in reliable FD models for real-world
industrial process monitoring.

II. RELATED WORK
A. FAULT DIAGNOSIS METHODS
FD methods fall under four general categories: model-based,
knowledge-based, data-driven, and hybrid approaches [45],
[46]. Data-driven methods for FD have gained significant
popularity and effectiveness in dynamic modern industrial
environments, especially with the advancement of machine
learning (ML) and artificial intelligence (AI) technologies.
This work focuses mainly on data-driven DL-based FD
methods that leverage large-scale industrial process datasets
to learn patterns and relationships directly from data,
making them more adaptable and proficient in detecting and
diagnosing faults or anomalies.

He and He [47] introduce a method for diagnosing bearing
faults using DL. The approach involves preprocessing sensor
signals through a short-time Fourier transform (STFT)
and, to detect bearing faults, constructs an optimized deep
learning structure called a large memory storage retrieval
(LAMSTAR) neural network using the resulting spectrum
matrix. The LAMSTAR network uses Self-Organizing Maps
(SOM) models to process the spectrum matrix that identifies
subpatterns in input data for bearing fault diagnosis. Results
suggest that the LAMSTAR network-based method performs
better at ‘normal’ and relatively low input shaft speeds.
Li et al. [48] present an approach for diagnosing motor bear-
ing faults using neural networks and time/frequency-domain
vibration analysis. Vibration simulation enables the design
of various motor rolling bearing FD strategies. Results show
that neural networks can interpret motor-bearing vibration
signatures effectively. Jiang et al. [49] propose an improved
deep recurrent neural network (DRNN) method, alleviating
the need for manual feature extraction and selection for
intelligent fault diagnosis. DRNN uses frequency spectrum
sequences as inputs to reduce input size, improve robustness,
and adopt an adaptive learning rate to enhance training
performance. The DL-based FD models in [47], [49], and
[48] are application-specific, relying on specialized feature
extraction techniques.

Further, Wen et al. [50] propose a new Convolutional
Neural Network (CNN) based on LeNet-5 for fault diagnosis.
The proposed method converts signals into two-dimensional
(2-D) images, allowing for better feature extraction and
eliminating the effect of handcrafted features. The technique
demonstrates improved prediction accuracy on popular

datasets, including the motor bearing, self-priming cen-
trifugal pump, and axial piston hydraulic pump datasets.
Xia et al. [51] introduce a CNN-based method that uti-
lizes sensor fusion to diagnose rotating machinery faults.
The approach automatically extracts representative features
through feature learning, eliminating the need for manual
feature selection. The method applies sensor fusion at the
data level for enhanced accuracy and reliability for various
machinery types and faults with limited prior knowledge.
We observe that FD models, depending on robust feature
extraction, can be application-specific, requiring explicit
knowledge of relations between process variables. Restrict-
ing OOD data during training to the application domain
for application-specific models improves OOD detection
results.

Xu et al. [52] propose a method for fault diagnosis using
a deep transfer convolutional neural network framework.
Time-domain signal data is transformed into images and
used as input for a CNN-based LeNet-5 to automatically
extract features and classify faults. Several offline CNNs
are pretrained to improve real-time performance, and their
shallow layers are transferred directly to the online CNN,
significantly improving the real-time performance while
achieving the desired diagnostic accuracy within a limited
training time. Lu et al. [53] propose a DL-based FD model
named DAFD to address cross-domain learning problems in
FD. DAFD models trained in a particular source domain are
adoptable in a different but related target domain. While [52]
and [53] both utilize transfer learning, the latter emphasizing
domain adaptation, there is a need for a dedicated strategy for
dealing with OOD data. Our method seeks to address, among
others, the problem of OOD detection, where synthetic
samples emerge from the original target domain.

Qiao et al. [54] propose an adaptable, time-frequency
dual-input model based on a CNN and long short-term
memory (LSTM) network (TFWConvLSTM) to address the
problem of bearing fault diagnosis under variable loads
and different noise interferences. TFWConvLSTM utilizes
a time-frequency dual-input structure to enhance feature
extraction and adopts a CNN-LSTM structure to capture
spatiotemporal characteristics. Additionally, the LSTM gate
structure is employed to use temporal features and improve
noise immunity fully. Zhao et al. [55] propose an end-to-end
Batch-Normalization-Based LSTM (BN-based LSTM) neu-
ral network for fault diagnosis. Unlike traditional methods,
BN-based LSTM trains the representation of raw input
data and classifier simultaneously, utilizing the dynamic
information of process data. In particular, BN-based LSTM
implements batch normalization to reduce the internal
covariate shift and accelerate the convergence of the LSTM
network. Zhang et al. [56] propose a novel method based
on gated recurrent unit neural networks for fault diagnosis
of rotating machinery (FDGRU). The approach initially
converts the one-dimensional time-series vibration signals
into two-dimensional images, followed by applying the
temporal information of the time-series to a Gated Recurrent
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Unit (GRU) that learns representative features from con-
structed images. A multilayer perceptron (MLP) is finally
employed to implement fault recognition. Zhao et al. [57]
develop a new DL method, deep residual shrinkage networks
(DRSNs), for FD tasks with highly noised vibration signals.
Jia et al. [58] present a DNN-based intelligent method for
diagnosing the faults of rotating machinery. The proposed
DNN models trained on massive datasets are less dependent
on human labor or prior knowledge about signal processing
techniques and diagnostic expertise. We observe that the
DL-based FD implementations mentioned above are deep
networkswith Softmax layers as the network output, resulting
in overconfident model predictions for both ID and OOD
samples.

B. OOD DATA GENERATION METHODS
OOD data generation is an important topic in ML as it
is essential for creating safe and reliable models ready for
deployment in the real world. In practice, the knowledge
of OOD data distribution, a priori (during training), can
reduce the tendency of DL-based FD models to make unsafe,
false predictions with high confidence [59]. Generating
high-quality and realistic data representative of the target
distribution is one of the main challenges in OOD data
generation. Currently, the main approaches for OOD data
generation include data augmentation and deep generative
modeling. This work focuses on synthetic data generation
through deep generative modeling.

1) DATA AUGMENTATION
Inoue in [60] proposes SamplePairing, a technique for
data augmentation that synthesizes a new image sample
by overlapping a source image with another randomly
picked from the training data through a process of pixel
averaging. Zhang et al. [61] propose a simple data-agnostic
augmentation routine known as mixup that constructs virtual
training samples generated as the linear interpolation of
two random samples from the training set and their labels.
The mixup approach regularizes the neural network to
favor simple linear behavior in between training examples.
Further, Tokozume et al. propose Between-Class learning
(BC learning) [62], an approach geared toward data augmen-
tation for sound recognition networks. BC learning generates
new data samples between class sounds by mixing two
sounds belonging to different classes with a random ratio.
Krizhevsky et al. [63], in their Alexnet implementation,
employ variations of data augmentation techniques such
as random cropping, flipping of extracted patches, and
altering the intensity of RGB channels. Adaptions of the data
augmentation techniques in Alexnet feature in subsequent
submissions in the ImageNet Large Scale Visual Recognition
Challenge (ILCVRC) [64]. Nonetheless, most of the data
augmentation techniques by design focus on diversifying ID
data to enhance the training set and prevent problems with
overfitting and poor generalization.

2) DEEP GENERATIVE MODELING
Lee et al. in [65] propose a generative adversarial network
(GAN) [66] with a modified objective function, allowing
the GAN to generate OOD samples in the ‘boundary’ low-
density regions of training distributions. During training,
optimization happens jointly for two models where a
confident classifier improves the proposed GAN and vice
versa as training proceeds. However, the confident classifier
is pre-trained on ID and OOD samples, creating an unrealistic
scenario where the model has prior knowledge of OOD
samples. Vernekar et al. in [67] demonstrate the inability
of GANs to generate samples for a simple 3D dataset,
suggesting the method will experience difficulties operating
in higher dimensions. Further, Vernekar et al. [67] propose a
method for generating two separate types of OOD samples
from latent encodings derived from the learned manifold
of a Conditional VAE (CVAE) [68]. The approach faces
scaling-up challenges due to the high computing cost
requirement when calculating the Jacobian over the entire
dataset and capacity limitations related to the Gaussian
distribution in the VAE. Motivated by the idea to relax the
classic assumption of Gaussian distributed data, Mŏller et al.
in [69] present Soft Brownian Offset (SBO) sampling,
a method to create synthetic OOD samples at the tails of
data distribution by applying transformations on the latent
representations of deep generative models such as VAEs.
SBO is also applicable to generic low-dimensional feature
representations of the ID data. Nonetheless, the approach is
limited to OOD sampling from only the low-density regions
of the low-dimensional learned manifold.

Our work builds upon the concepts in [67], where we
propose using Umbrella Sampling (US) [70] to access
latent variables of the OOD data located in the low-density
regions of the learned manifold by sampling extremely
low-probability areas of the posterior distribution. Further,
we utilize a class-based Jacobian, calculated from a limited
sample size, resulting in efficiencies in computing cost.

III. PROPOSED MANIFOLD GUIDED SAMPLING METHOD
In this section, we present our proposed method. First,
we outline the concepts of manifold hypothesis that form
a basis for our proposed approach. Second, we provide a
comprehensive overview of our methodology, including the
sampling process and implementation for types 1A, 1B,
and 2 OOD data. Finally, we outline the implementation of
the MGS algorithm, along with the proposed pseudo-code.

A. MANIFOLDS AND HIGH-DIMENSIONAL DATA
One of the prominent characteristics ofmodern-day industrial
datasets is the high dimensional data typically compiled in
a large-scale nature. For high-dimensional data, the number
of features is usually large and can easily exceed the
number of observations in a dataset. Due to the challenges
associated with learning in higher dimensions, [71], it is
essential to identify low-dimensional subspaces of the data
space containing meaningful information. A collection of
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methodologies for analyzing high dimensional data based
on geometrical and topological approaches support the
following hypotheses:
• The manifold hypothesis states that real-world data
presented in high-dimensional input space are more
likely to concentrate on a much lower-dimensional
sub-manifold embedded in the high-dimensional input
space [41], [42], [43], [44].

• The manifold hypothesis for classification states that
for multi-class data, different classes are likely to con-
centrate on different disjoint sub-manifolds separated by
low-density regions in the input space [41], [72].

The manifold-related hypotheses are essential to many
dimension reduction algorithms and other manifold-inspired
algorithms [72].

B. METHODOLOGY
Given a high-dimensional ID dataset, we begin by obtaining a
transformation into a lower-dimensional data space, retaining
the meaningful properties present in the original data. A deep
generative model such as the VAE is suitable for this task
as it can model a relatively smooth latent space. In practice,
the VAE generates a reconstruction of the input x̃, given
the latent variable z through a decoder pθ (x̃|z) and the
encoder qφ(z|x), representing the variational approximate
posterior. From the ID high-dimensional input space, theVAE
models a lower-dimensional manifold embedding where the
high-density regions correspond to dense areas of the input
space. For our implementation, we use the Total Correlation
Variational Autoencoder (β-TCVAE) [73], a VAE model
that learns disentangled latent representations from the input
data. In particular, through β-TCVAEs, we obtain a more
interpretable generative model capable of understanding the
role of each latent dimension in the data generation process.

Vernekar et al. in [74] propose two categories of OOD
samples: Type 1 (1A and 1B): OOD samples on the
data manifold and Type 2: OOD samples outside the data
manifold. In this work, we adopt similar OOD sample
categorizations with adjustments towards feature robustness
under the influence of outliers and resource management for
improved computational costs.

For Type 1: OOD samples on the data manifold, the
low-density regions in the input space corresponding to
ID data boundary regions on the manifold represent areas
consisting of OOD data. Following themanifold hypotheses
(Sec. III-A), we observe that boundary regions on the
manifold have densities that gradually decrease the further
away you move from the dense areas.

We begin by obtaining qφ(z|x) from our trained β-TCVAE
model, a uni-modal multivariate Gaussian with a diago-
nal covariance structure. qφ(z|x) represents the variational
approximate posterior distribution from which we seek
to retrieve the outliers representing classwise Type 1A:
classwise samples on the intersecting regions of manifold
and Type 1B: classwise samples on low-probability regions
of the manifold, (See Fig. 1: Type 1A, 1B OOD). Sampling

from low probability regions of a given classwise cluster
distribution ZIDk ∼ qφ(zk |xk ) retrieves the local class k
outliers existing around the respective cluster region on the
manifold.

To obtain samples in the low-density regions of the learned
ID data-supporting manifold, we apply US, an algorithm that
performs sampling on extremely low-probability regions of a
posterior distribution, accurately down to approximately 15 σ

on the credible region. The US algorithm applies temperature
stratification, a technique that flattens the distribution by
defining various temperatures and biasing window functions,
enabling the exploration of wider parameter ranges and
low-probability areas of the posterior distribution. Expo-
nential spacing of temperatures ensures equal exchange
probabilities between windows.

From class k encoder mappings ZIDk , we can estimate the
mean µIDk and covariance 6IDk that define the structure of
the aggregate class k posterior distribution. In our applica-
tion, we use the minimum covariance determinant (MCD)
method [75], [76], [77], a robust estimator of the mean
and covariance matrix aimed at minimizing the influence of
outliers. The US algorithm then enables us to sample the
low-probability regions of the class k posterior distribution,
a multivariate Gaussian with mean µIDk and covariance 6IDk
to obtain our outlier zOODk . Additionally, we can increase
the diversity of generated OOD samples through targeted
adjustments of the disentangled latent variables. To this end,
we introduce a latent noise vector variable ϵ with elements in
the range [−2.5, 2.5]. We apply random transformations to
individual elements of latent vector z through vector addition
with ϵ and decode to obtain a more diverse set of OOD data.

For Type 2: OOD samples outside the data manifold,
we observe that samples inhabiting regions of relative
proximity yet isolated from the ID data-supporting manifold
represent an additional category of OOD data. To this end,
we adopt the method proposed by Vernekar et al. in [74],
where a sample existing in a direction perpendicular to the
tangent space of the sub-manifold at a point xID corresponds
to an OOD sample x⊥OOD that falls outside the manifold (See
Fig. 1: Type 2). In particular, consider a VAE that models a
lower-dimensional data manifold from the high-dimensional
ID data XID through corresponding latent variables ZID. The
encoder qφ : XID → ZID and decoder pθ : ZID → X̃ID
functions provide a mapping through which we can recreate
input data in the form x̃ID = pθ (qφ(xID)) and as a result, for
a given point xID, the tangent space of the manifold is the
column space of the Jacobian matrix:

J(xID) =
∂pθ (z)

∂z

∣∣∣∣
z=qφ (xID)

(1)

Notably, the basis vectors of the left null-space of the
Jacobian denoted null(J⊤(xID)), span the space perpendicular
to the sub-manifold at the point xID. The perpendicular
vector v⊥ is thus obtained by randomly sampling the set
of unit vectors V⊥ ∼ null(J⊤(xID)). However, a primary
concern is the computational cost of the Jacobian matrix
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over the entire dataset. In our implementation, we make the
following adjustments: (i) From the manifold hypothesis
for classification, we observe that different classes are
likely to concentrate along different sub-manifolds. There-
fore, we obtain a per-class average Jacobian including the
corresponding left null space upon which we derive the
class-specific perpendicular vectors v⊥k . (ii) Based on the
quality of the average Jacobians, we can reduce the required
number of samples to achieve reliable results to a limited
number of batches b ∈ [10, 50]. Further, we replace the
perturbation (vector addition transformation) with a d × d
rotation matrix, where k is the same dimension as x̃IDk ∈ Rd .
We then generate x⊥OODk by rotating x̃IDk by an angle γ ,
uniformly sampled from within the range [45◦, 90◦] towards
v⊥k . The rotation matrix provides us with a broader spectrum
of choices where the greater angle sizes γ yield x⊥OODk
samples more similar to v⊥k .

1) MGS LEARNING ALGORITHM
We outline the proposed algorithmic approach for the MGS
in 1, describing the procedure to obtain synthetic OOD data
from a deep generative model. Inputs for Algorithm 1 include
(i) a minimum acceptable threshold distance d∗ from the
ID data, (ii) a perturbation value ϵ for adjusting the latent
variables, and (iii) a batch size b for the decoder Jacobian
matrix. The MGS algorithm uses the following four main
steps in its implementation:

In the first step, we train a β-TCVAE, obtaining the ID data
supporting manifold with disentangled representations of the
latent variables, an encoder qφ(zk |xk ) and decoder pθ (x̃k |zk ).

In the second step, use the MCD approach to obtain
the mean µIDk and covariance 6IDk from the classwise
posterior distribution of the latent variables zIDk . Using
the US approach, we perform targeted sampling on the
low-probability regions of the class k posterior distribution to
obtain zOOD1

k
for classwise types 1A, 1B latent variables. For

type 2, we obtain the classwise tangent space of the manifold
J(xIDk ) averaged over the batch of size b as illustrated in
equation 1. The left null-space of the Jacobian denoted
null(J⊤(xIDk )) gives the classwise latent variable zOOD2

k
for

Type 2 OOD data.
In the third step, we compile zOOD1

k
and zOOD2

k
into unified

collections of classwise latent variables zOODk . We then
perturb the classwise latent variables zOODk in the form
(zOODk × ϵ) to obtain z̃OODk .
Finally, in step four, decoding z̃OODk using the decoder

pθ (x̃k |z̃OODk ) generates the preliminary classwise OOD
dataset X̃OODk . Based upon samples that fall within a
minimum acceptable distance d∗ from the original input
dataset d∗ ≤ d(x̃OODk ,Xk ), we uniformly select classwise
samples x̃OODk and compile the final OOD dataset XOODk .

IV. EXPERIMENTAL RESULTS
A. CASE STUDY
We evaluate the effectiveness of our proposed synthetic OOD
data generation method, MGS, using the Steel Plates Faults

Algorithm 1 MGS Learning Algorithm
Input: minimum distance d∗ set as an acceptable

threshold from the ID data, perturbation value
ϵ for adjusting latent variables, batch size b for
decoder Jacobian matrix.

Data: D = {xi, yi}Ni=1, set of N i.i.d. labeled samples
from the training dataset.

# Step 1
Fit a β-TCVAE on dataset D to obtain encoder
qφ(zk |xk ) and decoder pθ (x̃k |zk )
for i ∈ {1, . . . ,N } do

# Step 2
Generate classwise posterior distribution
zIDk ∼ qφ(zk |xk )
For types 1A and 1B:
(i) Obtain the mean and covariance from the
classwise posterior distribution using MCD

µIDk , 6IDk ←−MCD(zIDk )
(ii) Sample low-probability regions in class k
posterior distribution using US
zOOD1

k
∼ US(µIDk , 6IDk )

For type 2:
(i) Calculate the classwise Jacobian
J(xIDk )←−

∂pθ (z)
∂z

∣∣∣
z=qφ (xIDk )

(ii) Calculate classwise left null-space for batch
size b
zOOD2

k
∼ null(J⊤(xIDk ))

# Step 3
Compile unified collections of classwise latent
variables
zOODk ←− numpy.vstack(zOOD1

k
, zOOD2

k
)

Perturb zOODk
z̃OODk ←− (zOODk × ϵ)

# Step 4
Decode z̃OODk to obtain
x̃OODk ∼ pθ (x̃OODk |z̃OODk )

1d = dmin(x̃OODk ,XIDk )
if 1d ≤ d∗ then

X̃OODik ←− x̃OODik
end

end
Output: X̃OOD, the set of generated OOD samples

dataset [78]. We compare MGS against other synthetic OOD
data generation methods: OOD Detection and Generation
using Soft Brownian Offset Sampling (SBO) [69] and
OOD Detection in Classifiers via Generation (CGen) [74],
as baselines. Finally, we augment the raw ID data with
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FIGURE 2. Two-dimensional plots for fault type Stains (OOD data - red and ID data - blue). Synthetic OOD data generation methods (i) CGen OOD, (ii) MGS
OOD, (iii) Soft-Brownian Noise OOD (SBO OOD), and (iv) Type 2: Orthogonal projection OOD data. MGS-generated OOD intersects the least with ID data.

FIGURE 3. Predictive entropy density plots for ID and OOD data from AE-DNN trained on Steel Plates Faults dataset augmented using OOD from (i) SBO,
(ii) CGen, and (iii) MGS methods. Entropy scores are normalized to fall within the range [0, 1]. MGS OOD improves AE-DNN capacity to detect OOD data
using predictive entropy scores by achieving the best divergence between ID and OOD predictive entropy scores.
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synthetic OOD data and train a DL-based FD application on
the real-world industrial task of defects classification under
OOD data uncertainty. Fig. 2 illustrates a selection of the
results (fault type: stains) fromOODdata generationmethods
applied to the Steel Plates Faults dataset. Comparatively,
MGS-generated OOD intersects the least with ID data.

1) STEEL PLATES FAULTS DATASET
In the steel industry, intelligent fault diagnosis during steel
plate production is essential for the timely identification of
defects that directly influence the safety and performance
of the final product. Notably, fault diagnosis in steel plate
production is challenging due to the complex nature of defects
owing to the dynamic production process and the quality of
raw materials [79]. The steel-plate surface defect inspection
system involves capturing video images of the steel plates
on the rolling equipment, followed by image processing and
analysis, detecting the area of the defect, extracting features
from the defect area, and finally, defect classification [80].

The steel plates faults dataset consists of 1941 instances
for classifying surface defects in stainless steel plates
during industrial production. This is a labeled dataset where
instances are classified into either of the seven distinct
typologies of faults: Pastry, Z Scratch, K Scratch, Stains,
Dirtiness, Bumps, and Other Faults. Each recorded instance
consists of 27 attributes representing the geometric shape
of the fault and its contour. For this dataset, we apply FD
to diagnose the source of the fault from among the seven
commonly occurring faults of the steel plates. The target class
distribution reveals an imbalanced dataset.

B. EXPERIMENTAL SETUP
For synthetic OOD data generation, we utilize the β-TCVAE,
a variant of the variational autoencoder that attempts to
learn disentangled representations. We choose the β-TCVAE
architecture as an encoder consisting of three fully-connected
layers (27, 16, and 4 output features) and the decoder
with three fully-connected layers (4, 16, and 27 output
features). We train the β-TCVAE for 5000 epochs using
the Adam optimizer [81] and a base learning rate of 0.1.
We partition the data into a train/test split of 70%/30%
and use a large batch size of 128. To achieve disentan-
gled representations, we combine the mean squared error
reconstruction loss with the special case β-TCVAE where
for the ELBO-TC-Decomposition, we choose the following
weights α = 1 for index-code mutual information (MI),
γ = 1 for dimension-wise KL and β = 10 for total
correlation (TC). During the sampling stage, to obtain types
1A and 1B using the US algorithm, we select a series of
higher temperatures {Ti}Li=0 that flatten the target distribution
to allow for the exploration of wider ranges of parameters.
In particular, we use the linspace NumPy function [82]
to select 24 number evenly space between intervals from
1 to 30. For both MGS and CGen, we combine types 1A, 1B,
and 2OOD data in the ratio 70%/30%. Further, we implement

the comparison method, SBO, using the hyperparameter
setting d∗ = 0.45, d∗ = 1 and σSBO = 1.

We utilize a deep feedforward neural network (DFNN)
for experiments on the DL-based FD models. The network
architecture consists of four fully-connected layers (270,
216, 162, 108, 54, and 13 output features), with each layer
followed by a rectified linear unit (ReLU) [83], a batch
normalization layer [84], and a dropout layer [85]. We use
four approaches to train our models with an aggregate dataset
of ID and synthetic OOD data: (i) RKL-PNs [34], [38],
(ii) AE-DNNs [39], (iii) exposing an ordinary DNN to OOD
data during validation (ODNN-OOD), and (iv) training an
ordinary DNN using only ID data (ODNN-ID). For the
ordinary DNN, we utilize the softmax-cross entropy loss.
We train the classifiers for 1000 epochs using the Adam
optimizer [81] and a base learning rate of 0.1. Through
a learning rate scheduler, the base learning rate adaptively
changed to 0.01 at epoch 75 and 0.001 at epoch 90 during
training. For the optimizer tuning, we ultimately settle on
Adam with ϵ values of 10−4. We partition the data into a
train/test split of 70%/30% and use a large batch size of
128 for all experiments on the Steel Plates Faults dataset,
an imbalanced dataset, hence increasing the chances of
including samples from the minority classes in each batch
during training.

Finally, to evaluate the robustness of models trained
using synthetic OOD data, we infuse noise into the test
data to simulate OOD data in the real-world industrial
environment. We create three distinct test OOD datasets
by introducing randomness through the following three
methods: (i) Gaussian noise with a mean of 0 and a standard
deviation of 1, (ii) Poisson noise with an influence parameter
of 1, and (iii) Uniform noise within the range of −1 to 1.

1) EVALUATION METRICS
For the evaluation of models on predictive uncertainty and
OOD detection, we choose the following metrics1:
Accuracy (ACC) ↑ measures the model performance as a

percentage of correct predictions out of the total predictions
made.

ACC =
1
N

N∑
n=1

1
(
yn ̸= ŷn

)
(2)

Acc evaluates the model’s generalization performance on a
hold-out test set. The higher the accuracy score, the more
accurate the model’s prediction.

Expected Calibration Error (ECE) ↓ measures the
consensus between classifiers’ predicted probabilities
(confidence) and empirical accuracy.

ECE =
J∑
j=1

| Bj |
n

∣∣acc (
Bj

)
− conf

(
Bj

)∣∣ (3)

where n represents the number of samples and Bj is the bin
j [59].

1Arrows next to the evaluation metric indicate which direction is better
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TABLE 1. Accuracy, ECE, NLL, Brier, AUROC-OOD, and FPR95 test set results for RKL-PN, AE-DNN, ODNN-OOD, and ODNN-ID trained on Steel Plates Faults
ID and synthetic OOD data generated from SBO, CGen, and MGS methods. Boldface values indicate better results per method.

TABLE 2. ID/OOD aleatoric and epistemic test set results for RKL-PN, AE-DNN, ODNN-OOD, and ODNN-ID trained on Steel Plates Faults ID and synthetic
OOD data generated from SBO, CGen, and MGS methods. Boldface values indicate better results per method.

TABLE 3. AUROC-OOD and FPR95 results for RKL-PN, AE-DNN, ODNN-OOD, and ODNN-ID models tested on noise-infused OOD from Gaussian, Uniform,
and Poisson methods. Boldface values indicate better results per method.

Brier Score (BS) ↓ measures the accuracy of predicted
probabilities.

BS =
1
N

N∑
i=1

(
p̂i − yi

)2 (4)

computed as themean squared error of predicted probabilities
and true classes where p̂ is a vector of predicted probabilities
and y is the one-hot encoded ground truth [86].

AUROC−OOD ↑ measures the Area Under the Receiver
Operating Characteristic Curve for OOD data by posing the
problem set as a binary classification with the OOD data
considered the positive class.

AUROC-OOD = ExOOD,xID

[
I
(
unc(xOOD) ≥ unc (xID)

)
| yOOD = +1, yID = −1

]
(5)

where unc(·) represents the uncertainty measure [87], [88].
False Positive rate (FPR) at N% True Positive Rate

(TPR) − (FPRN) ↓ measures the probability of a model

misclassifying an out-of-domain input as in-domain given
N% of the ID samples are correctly classified [74].
ConfidenceCalibrationmeasures the correlation between

confidence and correctness of model predictions. For a
selected threshold, the metric is provided by the area under
the precision-recall curve (AUPRC) [89] as follows:
• Aleatoric Confidence (Alea. Conf.) ↑ obtained using
maximum class probabilitymaxk p̂k as the threshold and
a binary set of labels where 1 corresponds to correct
predictions while 0 to incorrect predictions.

• Epistemic Confidence (Epist. Conf.) ↑ we use the
empirical variance of the predicted class p̂k , as the
threshold against a binary set of labels where 1 cor-
responds to correct predictions while 0 to incorrect
predictions.

OOD Detection measures the models’ ability to detect
OOD samples. For a selected threshold, themetric is provided
by the area under the precision-recall curve (AUPRC) [89] as
follows:
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• Aleatoric OOD Detection (OOD Alea.) ↑ obtained
using maximum class probability maxk p̂k as the
threshold and a binary set of labels where 1 corresponds
to in-domain data while 0 to out-of-domain data.

• Epistemic OOD Detection (OOD Epist.) ↑ we use
the empirical variance of the predicted class p̂k , as the
threshold against a binary set of labels where 1 cor-
responds to in-domain data while 0 to out-of-domain
data.

V. RESULTS AND DISCUSSION
First, we analyze the impact of synthetic OOD data on
DL-based FD model performance in OOD data detection
tasks. Table 1 compares OOD data from MGS, CGen, and
SBO methods across classifiers trained using RKL-PNs,
AE-DNN, ODNN-OOD, and ODNN-ID approaches. In the
classifiers category, RKL-PNs and AE-DNN, with the loss
function combining objectives for both the ID and OOD data,
achieve higher AUROC-OOD scores, revealing an improved
capacity for OOD data detection tasks. In particular, the
RKL-PNs classifier, trained using synthetic OOD data
from the MGS method, attained the overall best score of
AUROC-OOD 0.93 and FPR95 score of 0.89, revealing a
relatively lower misclassification probability of OOD inputs
from models trained using synthetic OOD data. Furthermore,
MGS outperforms both SBO and CGen approaches regarding
AUROC-OOD and FPR95 scores across various classifier
types, indicating the superior quality of MGS-generated
synthetic OOD data. These results suggest that augmenting
the Steel Plates Faults dataset withMGS-generatedOODdata
enhances the FD model capacity for OOD detection tasks in
real-world scenarios where the OOD data may emerge.

Ordinary classifiers (ODNN-ID) trained using softmax
cross-entropy obtain higher model accuracy, ECE, NLL,
and Brier scores due to training exclusively on ID data.
Nonetheless, incorporating OOD data during validation in
the ODNN-OOD classifiers enhances the model performance
on OOD detection tasks. MGS-generated synthetic OOD
data achieves the best within classifier scores of 0.82 for
AUROC-OOD and 0.97 for FPR95.

Table 2 presents the results from experiments investigating
(i) the correlation between confidence and correctness of
model predictions and (ii) measures the models’ capacity
for OOD detection. Fundamentally, aleatoric and epistemic
confidence metrics (Alea. Conf and Epist. Conf) seek
to establish the likelihood of correct predictions given
high confidence. For the RKL-PN and AE-DNN classi-
fiers, the CGen-generated OOD data achieves the best
confidence scores. Nonetheless, the ODNN-OOD classifier
using MGS-generated OOD data during validation has
the best overall confidence scores at 0.9317 aleatoric and
0.9318 epistemic, indicating model predictions that are more
likely to be correct given the increase in confidence. For
the OOD detection tasks, investigations reveal that using
the MGS-generated OOD data enhances the performance
of RKL-PN and AE-DNN classifiers, evidenced by the

significant improvements over the other OOD generation
approaches. In particular, augmenting the Steel Plates Faults
dataset with MGS-generated OOD data for the AE-DNN
classifier achieves the best overall scores at 0.9618 OOD
aleatoric and 0.9643 OOD epistemic. The CGen-generated
OOD data achieves the best scores for the ODNN-OOD,
while failure to use any OOD data during training yields
the poorest scores of 0.50 for both OOD aleatoric and OOD
epistemic, further demonstrating the significance of synthetic
OOD data in the training of safety-related FD applications.

Fig. 3 illustrates the predictive entropy density plots of
ID and OOD data from AE-DNN trained on the Steel
Plates Faults dataset augmented using OOD data from
SBO, CGen, and MGS methods. Augmenting ID data
using MGS-generated OOD yields the best divergence
in predictive entropies, with OOD samples predominantly
obtaining high entropies while ID obtaining low entropies.
Notably, distinguishing between ID and OOD data is
essential for DL-based FD systems deployed in safety-related
industrial environments, in this case, implementable through
a thresholding-based system. The distinction in predictive
uncertainties between ID and OOD samples highlights the
benefits of using MGS-generated OOD data to enhance the
capacity for OOD detection tasks.

Table 3 presents the results from experiments evaluating
the DL-based FD model robustness against a collection of
noise-infused OOD data. We observe that training classifiers
using a combination of ID and synthetic OOD data achieves
superior model performance in detecting noise-infused OOD
data. In particular, augmenting the Steel Plates Faults dataset
with MGS-generated OOD data during training enhances
the performance of RKL-PN and AE-DNN classifiers,
as evidenced by the AUROC-OOD and FPR95 scores.
ODNN-OOD classifiers with access to MGS and CGen
synthetic OOD data during training outperform ODNN-ID
classifiers with the observation that CGen-generated OOD
data achieves the best improvement across the ODNN
category.

VI. CONCLUSION
This paper proposes Manifold Guided Sampling (MGS),
a data-driven method for generating synthetic out-of-
distribution (OOD) data based on deep generative networks.
In particular, MGS leverages an in-distribution (ID) data-
supporting manifold of large-scale industrial process data
and a combination of strategic manifold sampling techniques
to create realistic OOD data. Through MGS, we address
the challenges of training data quality and availability for
data-driven deep learning-based fault diagnosis systems by
generating synthetic OOD data that simulate real-world
anomalies not present in the training set. We demonstrate
the impact of augmenting ID data with synthetic OOD data
during training for models, with results that suggest the
synthetic data improves the model capacity for OOD detec-
tion and provides robustness to the effects of distributional
shifts.
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Furthermore, MGS samples low-probability regions of
the manifold and is more efficient in terms of compute
resources due to the utilization of smaller batch sizes when
generating the tangent space of the manifold. It maintains the
in-distribution data feature space as a reference point during
data generation and applies a similarity distance constraint
to ensure the resulting synthetic data is realistic. Our results
show the best distinction between ID and OOD data, which
is crucial for systems deployed in safety-related industrial
environments. In future work, we aim to investigate the
effectiveness of our approach on time-series datasets and
high-resolution sensor data such as large-scale multimodal
camera-LiDAR datasets.
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