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Abstract: The rapid development in manufacturing industries due to the introduction of IIoT devices
has led to the emergence of Industry 4.0 which results in an industry with intelligence, increased
efficiency and reduction in the cost of manufacturing. However, the introduction of IIoT devices opens
up the door for a variety of cyber threats in smart industries. The detection of cyber threats against
such extensive, complex, and heterogeneous smart manufacturing industries is very challenging
due to the lack of sufficient attack traces. Therefore, in this work, a Federated Learning enabled
Deep Intrusion Detection framework is proposed to detect cyber threats in smart manufacturing
industries. The proposed FLDID framework allows multiple smart manufacturing industries to
build a collaborative model to detect threats and overcome the limited attack example problem with
individual industries. Moreover, to ensure the privacy of model gradients, Paillier-based encryption is
used in communication between edge devices (representative of smart industries) and the server. The
deep learning-based hybrid model, which consists of a Convolutional Neural Network, Long Short
Term Memory, and Multi-Layer Perceptron is used in the intrusion detection model. An exhaustive set
of experiments on the publically available dataset proves the effectiveness of the proposed framework
for detecting cyber threats in smart industries over the state-of-the-art approaches.

Keywords: smart manufacturing; IIoT; cyber threats; Industry 4.0; federated learning; deep learning;
intrusion detection

1. Introduction

Industry 4.0 is a new phase of the industrial revolution that heavily relies on internet-
connected hardware, automation, ML, and real-time data to enable the production process
with negligible human intervention. The objective of Smart Manufacturing (SM) is to
distinguish openings for mechanizing activities and use data analytics to further advance
manufacturing performance. SM is a precise utilization of the Industrial Internet of Things
(IIoT) [1]. IIoT comprises inserting sensors in the manufacturing system to collect statis-
tics on their functional status and performance. The amalgamation of IIoT technology
in manufacturing brings adaptability and greater efficacy of production in the industrial
environment [2]. However, the introduction of IIoT in the industrial manufacturing process
brings new challenges such as: security, physical damage, seamless integration, and skill
gap [3–5]. SM industries are exposed to a variety of cyber attacks such as DoS, eavesdrop-
ping, ransomware, side channel, port scan, passive replay, malicious code injection, buffer
overflow and many more [6].

When comparing the effects of these attacks on traditional IT systems and manufac-
turing systems, the results are catastrophic for manufacturing, because in manufacturing
systems damages may include physical damage to the production system, physical envi-
ronment and people. In Industry 4.0, as it is hard to identify the reason for the problem,
possible sets of attacks and their effects are larger in smart manufacturing systems than in
traditional IT systems [7].
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Thus, this drives the need for new anomaly detection approaches using AI. As AI for
cybersecurity tools has improved the robustness, resilience and response to cybersecurity
attacks [8,9], by watching a network, i.e., monitoring traffic and events and identifying
cybersecurity threats such as malware [7], software vulnerabilities [10], fraudulent pay-
ments and network intrusion detection [11]. It does this by modeling normal (and in some
cases anomalous) behaviors and classifying events using either supervised or unsupervised
learning techniques and issuing alerts when anomalous behavior is observed.

Vulnerabilities in Smart Manufacturing

To comprehend the potential attack vectors, one must first comprehend the system’s
probable weaknesses. However, a lot of studies have been conducted to discover such
vulnerabilities in smart manufacturing, but there will always be a new set of vulnerabilities
that demand the development of advanced detection systems. Manufacturing systems
are designed without considering security. It may be pre-assumed that these systems are
isolated, so will not be subjected to security attacks. Hardware and software security is not
considered while building these systems. As with the lack of literature and understanding
related to vulnerabilities in SM, it can only be understood based on the behavior of other
systems when they are attacked.

This shows that there is a high need, and also increased interest, observed in the
literature to address such issues in smart manufacturing. The state of art approaches show
their diversion towards using AI-based threat detection approaches in the past few years.
Intrusion detection is the most commonly used method in IIoT to detect the presence of
an attack so as to minimize its effects [12]. However, huge data produced by IIoT devices
have become a tough task to be handled with such anomaly detection techniques. Some
other examples are [13] used Q-learning to handle threats in software-defined IIoT. In [8],
the author proposed a deep learning-based solution to detect attacks in smart grid CPS.
Further related work on cyber threat detection in smart manufacturing is discussed under
Section 2.

It is found that AI-based threat detection techniques used in SM, unfortunately, rely on
the fact that there is always a large number of examples of various cyber threats available
to build a high-quality intrusion detection model. However, in reality, one SM industry
will have only a limited number of cyber threat examples to build the model which is
quite challenging. Moreover, the owners of SM industries are not willing to share their
information and data with each other to build a high-quality comprehensive model due to
privacy concerns. So, in such a scenario, it is quite difficult and an intractable task to build
a high-quality model to detect cyber threats in SM industries.

To address such issues, a novel distributed learning-based FL is utilized. FL enables
collaborative decentralized training of an intrusion detection model [14–16]. In FL, the
model gradients are optimized collectively by a substantial number of edge devices without
disclosing their personal data. Therefore, in this work, we propose an FL-enabled deep
intrusion detection framework to detect cyber threats in SM industries. In the proposed
FL-enabled framework, the Deep Intrusion Detection model is used to detect cyber threats
using a hybrid CNN+LSTM+MLP model. Moreover, to ensure the privacy of model
gradients and to handle FL-based attacks Paillier encryption is used. The main contributions
of this paper are:

1. Developed a federated learning-enabled framework to construct a comprehensive
intrusion detection model which can collaboratively train the model on multiple data
from different industries without disclosing it to each other. As data does not leave
the premises, thus data privacy is also achieved.

2. A proposed Deep Intrusion Detection model for cyber threat detection in SM using
CNN, LSTM, and MLP. The proposed model is proven to be efficient in detecting
cyber threats and incorporated with the federated learning framework.
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3. Proposed a Paillier-based encryption to provide secure communication throughout
the training process, in order to safeguard the privacy of model gradients and to
handle the threats against the federated learning framework.

4. Tests carried out on an IIoT-based dataset using the proposed FLDID framework to
prove its effectiveness in the industrial environment as well.

The rest of the paper is organized as: the present approaches used for cyber threat
detection are discussed in Section 2. The system model, assumptions made and threat
model considered in this paper are presented in Section 3. Section 4 describes the material
and methods used and Section 5 shows the evaluation of the proposed framework and
discusses the observations and results. Finally, Section 6 presents the conclusion and
discusses the future work.

2. Related Work

Recent research has shown a tremendous increase in interest in addressing the issues of
cybersecurity in smart manufacturing industries. Therefore, many researchers are focusing
on developing AI-based Network Intrusion Detection Systems for smart manufacturing
industries. These Intrusion Detection Systems monitor and detect intrusions across the
industrial network. The IDS are broadly classified into signature-based IDS and anomaly-
based IDS. Anomaly-based IDS have gained major attention for intrusion detection, due
to their capability for identifying novel attacks from complex and heterogeneous data
generated from the IIoT devices in SM industries [17].

In the literature, there exist a wide range of anomaly detection methods proposed for
cybersecurity in traditional networks [18–21]. However, these existing anomaly detection
methods are not compatible with the new Industry 4.0 environment and do not achieve
good accuracy. Therefore, to improve the accuracy of such systems while handling complex
and heterogeneous data in SM industries, ML techniques have been employed [22]. For
example, [23] investigates the problem of intrusion detection and offers a solution based
on decision trees. In the paper [24], the author proposed a Gaussian Naive Bayes with
LSTM model to identify two different types of abnormalities. One is hardware anomalies,
particularly those produced by various types of sensors, which may have issues including
interference from the environment, device malfunction, and misreadings. Another is soft-
ware anomalies, which can result in aberrant or altered data gathering due to programme
exceptions, transmission faults, and malicious attacks. For the purpose of detecting DDoS
in IoT networks, the author [25] used a number of ML techniques and attains high detection
accuracy by utilizing network behaviors for the feature selection process. Another study
developed a framework for anomaly detection [26] that utilized both a temporal-spatial
model and a logging-tracing model to identify anomalies in network traffic.

Deep learning methods have recently produced impressive results and emerged as
one of the successful ways for intrusion detection systems. A variety of deep learning
approaches to security monitoring were reviewed by the author [27]. They contrasted
common deep learning models with a few traditional ML techniques. The findings in the
review showed how useful deep learning techniques are for protecting against cybercrime.
To specifically detect intrusions, the author [28] incorporated deep neural networks and
used the KDD99 dataset to prove the efficacy of the proposed approach. A dense random
neural network was constructed in another study [29] to identify cyberattacks. In contrast,
in [30], the author discovered that a deep neural network with three hidden layers produced
classification results that were superior to those achieved with more classes when fewer
invasive classes were used.

All of these centralized learning techniques necessitate central storage (server) of all
data acquired on local devices. This necessity not only increases concerns about threats
pertaining to privacy and data leaks, although it also heavily requires the server’s storing
and computational capacities when the data is large. However, the distributed approach
allows multiple systems to train model replicas with different data groups in parallel to
solve the above problem. However, it still requires access to the entire training data set
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in order to partition it into uniformly distributed shards, thereby causing security and
privacy issues.

To overcome such a problem FL has appeared as an intriguing method. FL intends
to develop a global model that can be trained on data spread across several devices while
maintaining data privacy. Some of the research using FL are: In [31], the authors proposed
a DNN-based client-server FL architecture. A large part of the suggested models achieved
pretty good accuracy (99.00%) came from the dataset utilized, N-BaIoT, which is regarded
as being highly simple and straightforward. However, adversarial attacks such as data and
model poisoning dramatically reduced performance, demonstrating the requirement for
more effective defenses. An FL-enabled GRU model is proposed in [32] which employed a
GRU to find the Mirai attack in an IoT network. However, the proposed model successfully
detects the Mirai attack but lacks resilience and robustness while aggregating the gradients
at the server. In the same year, an MT-DNN-FL has been proposed in [33] to carry out
the work for identifying anomalies in the network. An FDAGMM was given in [34] to
address the classic DAGMM’s performance issue for network anomaly detection due to a
lack of data.

The author in [35] used the X-IIOTID dataset to prove the effectiveness of their
proposed approach for detecting targeted ransomware attacks for IIoT. They used asyn-
chronous peer-to-peer FL and DL algorithms to detect ransomware attacks. The result
shows that the proposed approach achieves a detection accuracy of 98.33%. Similarly in [36]
author developed safe data sharing architecture for IIoT devices using FL to handle the
data breach and achieved an accuracy of 99.79% accuracy over the X-IIoTID dataset.

Despite the efficient anomaly identification achieved by earlier investigations, the
following issues still exist. The first open issue is how to provide privacy-preserving
intrusion detection. Second, given that clients and servers may be partially honest and
how anomaly detection accuracy is improved. Third, the existing techniques are tested
on an intrusion dataset created on a traditional network. However, it completely differs
from the SM environment as it lacks interoperability and heterogeneity. Thus, in this
paper, the FL-enabled deep intrusion detection framework is proposed and tested on
the IIoT-based “X-IIoTID” intrusion dataset [37] to solve the above problems in smart
manufacturing systems.

3. System Model, Assumptions and Threat Model
3.1. System Model

The system model used in this paper is presented in Figure 1. The proposed FLDID frame-
work consists of edge devices as representative of SM industries, cloud servers/aggregators,
and key management centers.

1. Edge Devices: Each edge device is representative of SM industries taking part in the
process of collaborative learning. These devices have the local data collected from its
associated SM industry and are responsible for building the local DID model using
this data. It is also responsible for communicating with the cloud server to send
local model parameters, receive aggregated model parameters from the cloud server,
and again perform the training on the received model. These steps are recursively
performed until convergence. The local model is placed on the edge devices which
are capable of performing intrusion detection on their local data. In this work, we
used a CNN+LSTM+MLP-based DL model for intrusion detection.

2. Cloud Server: It is accountable for collaboratively building the DID model in a
federated way. The cloud server consists of two major functionalities: (a) initialization
of global model parameters and sharing it with local edge devices, (b) aggregating the
parameters uploaded by edge devices until the model converges and sends it back to
the edge devices.

3. Key Management Centre: The KMC is responsible for ensuring secure communica-
tion between the cloud server and the edge devices. It establishes a secure channel
between them using a Paillier-based cryptosystem. The Paillier cryptosystem is a
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partially homomorphic encryption scheme that allows operations on encrypted data.
KMC is also responsible for generating public and private keys used in the Paillier
cryptosystem.

Figure 1. System architecture for proposed framework.

3.2. Assumptions

The major assumptions considered in this work are:

• Cloud server is considered a trustworthy party but curious, which is honestly per-
forming its assigned task but quite interested in knowing the model gradients.

• KMC is assumed to be the fully honest party ensuring secure communication between
edge devices and the cloud server.

• Edge devices are considered to be partially trustworthy, as they follow the process but
may be curious about the other edge device’s data resources.

3.3. Threat Model

In this work, we considered the cyber threats launched against SM industries along
with the threats targeting the federated learning framework. The major threats launched
against SM industries are DoS, DDoS, Reconnaissance, Exploitation, Weaponization, RDoS,
Crypto Ransomware, Command/Response Injection attacks and many more. We consid-
ered all the mentioned cyber threats in one category as attacks for this work.

The threats considered against the FL framework in this work are membership in-
ference attacks, unintentional data leakage and reconstruction through inference, and
GANs-based inference attacks.
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4. Materials and Methods

This section presents the elaboration of the proposed FLDID framework by first out-
lining the overall workflow of the framework, followed by introducing the Deep Intrusion
Detection model designed for intrusion detection, and then discussing the Paillier encryp-
tion scheme used for securing the communication between edge devices and the server.

Algorithm 1 presents the complete procedure of the proposed FLDID framework.
The performance of deep learning models can be enhanced by collaboratively training the
model on multiple data resources which consist of a variety of attack examples. Thus, the
proposed FLDID framework is designed to allow collaborative learning between different
SM industries and to build a robust and comprehensive intrusion detection model using
federated learning with secure communication. The major phases of the proposed FLDID
framework are described below:

Algorithm 1 Secured FL procedure
Input: Set of Edge devices En and their associated local data Dn|n ∈ N, No. of communica-
tion rounds R
Output: Global DID model

1: Cloud server initialize model parameter W0 and η, B, ζ, ρ, τ;
2: Each En informs the data size |Dn| to server;
3: Server computes contribution ratio αn = |Dn|/(|D1|+ |D2|+ . . . + |DN |);
4: For each En KMC generates key pair (PubK, PriK) using KeyGen(n) and establishes

secure channel between each edge device and server;
5: For r = 1 to R ;

(i) En computes rth round model gradients Wr
n using Algorithm 2;

(ii) Encrypt model gradients Wr
n as E(Wr

n) = Encrypt_grad(Wr
n, PubK);

(iii) Upload E(Wr
n) to cloud server;

End
6: Cloud server aggregates E(Wr

n) as C = Aggr_grad(E(Wr
1), (W

r
2), . . . α1, . . . αn);

7: Server distributes C to all edge devices En
8: To obtain new global model En performs decryption as W̃r = Decrypt_grad(C, PriK)
9: En updates model gradients using W̃r;

10: r ← r + 1;

• Step 1 (Model initialization): In this step, the server selects and sends the initial
parameters W0 for the DID model and other necessary parameters required for model
training such as: Batch size B, Learning rate η, loss function ζ, momentum ρ, and decay
τ to the edge devices. Moreover, each edge device En associated with SM industries
Sn informs the server about the size of the data Dn it has from the industry, where
n ∈ N = 1, 2, . . . , N, this helps the cloud server to calculate the contribution ratio
αn for each edge device. A positive integer R defines the number of communication
rounds between the edge devices and the cloud server.

• Step 2 (Key generation): In addition to the above parameters, next the public key PubK
and the private key PriK are generated using KeyGen(n) by the KMC which is used in
Paillier encryption to establish a secure path between the server and edge device.

• Step 3 (Local model training): Based on the initial model parameters W0, η, B, ζ, ρ, τ
received from the cloud server, each edge device performs the model training on
their local data Dn. The model used for training at the edge devices is described in
Section 4.1. In the proposed DID model, a hybrid CNN+LSTM+MLP model is used
to train the model for detecting intrusions in smart manufacturing. The elaborated
training process is presented in Algorithm 2.

• Step 4 (Gradient encryption): After training the model on the local data each edge
device En encrypts the model gradients Wr

n using Encrypt_grad(Wr
n, PubK), where

Wr
n are the model gradients after training at edge device En in the rth round. Then,
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the encrypted gradients E(Wr
n) of the local models by each edge device are sent to the

cloud for aggregation to generate the comprehensive global model.
• Step 5 (Global model construction): Cloud server aggregates the encrypted model

gradients received from each edge device participating in the process of collaborative
learning. The gradients are aggregated using Aggr_grad(E(Wr

1), E(Wr
2), . . . E(Wr

n),
α1, . . . αn), where αn is contribution ratio of each edge device. Then the aggregated
encrypted gradients are sent back to edge devices as a cipher text C.

• Step 6 (Local model updation): At each edge device after receiving the global model
(aggregated gradients) as a cipher text, each edge device performs decryption
Decrypt_grad(C, PriK) using the private key. After receiving the decrypted gradi-
ents W̃r, local DID models are then updated and retrained with their local data.

Algorithm 2 DL model training
Input: W0, η, B, ζ, ρ, τ
Output: Wr

n
1: Divide Dn, into equal size B batches with feature vector x;
2: Set Wr

n with initial values ;
3: For each Batch;

c1 ← Forward x to Conv1;
c2 ← Forward c1 to Conv2;
λ← Flatten (c2);
H
′ ← Forward λ to LSTM1;

µ← Forward H
′

to LSTM2;
M← Forward µ to Dense;
γ← Dropout (M);
ν← Forward γ to Output(Sigmoid);

4: Compute loss function using:
ζ = − 1

B ∑1
i=0 xi.logx̂i + (1− xi).log(1− x̂i);

5: Update Wr
n;

6: Repeat until ζ converges;

4.1. Proposed Deep Intrusion Detection Model

This section presents the hybrid deep learning-based intrusion detection model. The
designed DID model consists of the pre-processing unit, and a CNN and LSTM unit
followed by an MLP unit as shown in Figure 2.

Figure 2. Architecture of designed DL model.
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The approach followed provides a diverse combination of convolutional and recurrent
neural networks. As network traffic events follow time series patterns, it is possible to cate-
gorize the present network connection record using the traffic connection records from the
past. We feed freshly produced features from CNN’s unit to LSTM and sequentially to MLP
in order to capture the time series patterns over time-steps and obtain the desired result.

The proposed DID model was selected following rigorous experimentation of several
DL techniques, including CNN, MLP, and LSTM with different numbers of layers, as well
as their topologies, network parameters, network architecture and hybrid combinations.
CNN and its variations in our experimental setup and dataset outperforms traditional ML
classifiers on comparing with them. The capacity of CNN to extract high-level feature
representations, which represent the abstract form of low-level feature sets of network
traffic links, is the fundamental driver for this success. The combination of two-layer CNN,
two LSTM layers, and a densely integrated MLP layer produced the best results on the
dataset considered in this work. Therefore, we decided to incorporate this model as an
intrusion detection model into our proposed federated learning architecture to detect cyber
threats in smart manufacturing. Each unit of the proposed DID model is described below:

4.1.1. Pre-Processing Unit

First, the data is pre-processed and given to the input layer. Data pre-processing is an
important step as all the ML algorithms deal with numerical data. So the features that are
of string types need to be label encoded. The numerical data that is obtained after the label
encoding does not correspond to the same range. So, to normalize all the feature values,
the min-max normalization technique is used [38]. This makes all the feature values come
under a similar range. The minimum value of the feature transforms into 0, the maximum
value transforms into 1, and every other value gets transformed between 0 and 1. So, the
final range of the values of the feature is in between [0, 1].

4.1.2. CNN Unit

CNN is employed in the proposed DID model to extract fine-grained characteristics.
Two (1-D) CNN layers constitute this unit. Each layer constitutes convolution, batch
normalization, and pooling layers. CNN’s local perception and weight sharing can enhance
model learning by significantly reducing the number of parameters. These modules
build layered structures that increasingly draw out more precise information by stacking
convolutional layers and achieve sampling aggregation by employing pooling layers. Each
convolution layer comprises convolution kernels. The layer of batch normalization enables
the network’s layers to learn more independently. The output of the earlier layers is
normalized using it. Batch normalization helps in high-yield learning and also prevents
the over-fitting of the model. It serves as a bridge between the pooling layer and the
convolution layer. As a result of this unit, a sequence of m features with size (n ∗ m) is
achieved, where n specifies the length.

Following the convolution operation of the convolution layer and batch normalization
layer, the features received possess high dimensionality. Thus, to reduce the feature
dimension and training cost pooling layer is also employed. Given one-dimensional data
from the time series events collected from SM industries as input vector x = (x1, x2, . . . xn, l),
where (xn ∈ Rd is the features available and l ∈ R is the class label) being the input of the
designed model, first given to the CNN unit. In this unit, a feature map zmap is constructed
by the 1D convolution layer using convolution operation with filter ω ∈ Rzd. From the
available features z, a new feature map zmap is obtained as:

θ
zmap
j = tanh(ωzmap xj:j+z−1 + a) (1)

where a ∈ R denotes the bias, filter θ is applied to each feature set z to obtain the feature
map as

θ = [θ1, θ2, . . . , θn−z+1] (2)



Sensors 2022, 22, 8974 9 of 18

further, this output is sent to the batch normalization and pooling layer. The complete
process of the CNN unit is represented as

c1 = Conv1(x) (3)

c2 = Conv2(c1) (4)

λ = Flatten(c2) (5)

where Conv1 and Conv2 represent the convolutional blocks with batch normalization and
pooling operation in the CNN and c1, c2 are the hidden vectors. Further, the output of the
second convolution block is flattened using the flatten layer and λ is the final output of the
CNN units. λ is the m feature sequence of length n and can be represented as (n ∗m).

4.1.3. LSTM Unit

The output of CNN is used as input to LSTM in the envisaged DID module. LSTM is
the superior version of Recurrent Neural Network (RNN). Instead of using standard simple
RNN units, LSTM uses memory blocks to handle the issue of disappearing and shattering
gradients. LSTM manages long-term dependencies far more easily than conventional
RNNs. This shows that LSTMs are capable of remembering and connecting knowledge that
is far older than the present [39]. A memory block in an LSTM is a relatively sophisticated
processing unit made up of one or more memory cells. LSTM uses gates such as forge gates
FT , input gates IT , and output gates OT . Two multiplicative gates make up the input and
output gates. The LSTM gate structures are defined as:

FT = ϕ(WF · [HT−1, XT ] + bF), (6)

IT = ϕ(WI · [[HT−1, XT ] + bI), (7)

S̃T = tanh(WC · [[HT−1, XT ] + bC), (8)

ST = FT ∗ ST−1 + IT ∗ S̃T , (9)

OT = ϕ(WO · [[HT−1, XT ] + bO), (10)

HT = OT ∗ tanh(CT), (11)

where WF, WI , WC, WO, and bF, bI , bC, bO are the weight metrics and bias vectors for input
XT at time step T. ∗ represents the element-wise multiplication, ST represents the cell
state. HT−1 and HT are the hidden layer states at step T− 1 and at T, respectively. ϕ is the
activation function used.

In this study, LSTM is designed to aid precise prediction in the time series data to find
anomalies. LSTM processes λ (output of CNN unit) in the following way:

H
′
= LSTM1(λ), (12)

µ = LSTM2(H
′
) (13)

4.1.4. MLP Unit

The MLP module is composed of a dense layer and an output layer separated by
a dropout layer. In order to avoid model over-fitting, the output of the LSTM µ in this
module is provided as input to an MLP unit with dropout as follows:

M = Dense(µ) (14)

γ = Dropout(M) (15)

ν = Output(Sigmoid(γ)) (16)
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where Dense and Output are the two fully connected layers, Dropout represents the dropout
layer. M and γ are the output of dense layer 1 and the dropout layer, respectively. Addi-
tionally, because the output predicted class contains two values, either attack or normal, the
output of the MLP dropout layer is passed to the output layer with the sigmoid function.

We utilized binary cross entropy as the loss function since the proposed DID model
uses binary classification to identify attack and non-attack traces in the smart manufacturing
industries, which is defined as follows:

ζ = − 1
B

1

∑
i=0

xi.logx̂i + (1− xi).log(1− x̂i) (17)

where B is the batch size, xi is the corresponding target value and x̂i is the corresponding
predicted value.

Algorithm 2 shows the steps involved in training the local models at each edge device.
Each edge device En trains the local model on their local data Dn. On each communication
round, upon receiving cipher text C, each edge device decrypts it and obtains new gradients
W̃r and updates Wr accordingly. After updation, the DID model is retrained at each edge
device En on their local data Dn until model convergence.

4.2. Encryption Method for Secure Communication

In order to ensure the privacy of data and model gradients, many encryption methods
have been developed. Although, none of the methods are capable of performing computa-
tions on the encrypted data. Thus, to handle such issues and in order to mitigate malicious
eavesdroppers and other attacks against the FL framework as mentioned in Section 3.3, the
Paillier-based encryption method is used. It is a type of partial homomorphic encryption
scheme which is capable of performing computations of encrypted data.

In this encryption scheme, the key management center is only responsible for the
generation of public and private keys for the clients but has no access to the data. KMC
does not even have any idea about what data is being encrypted by the clients.

In the case of the server, the data received here is in the form of cipher text which
is encrypted by the clients. Moreover, the operations performed at the server are all
homomorphic operations which are performed without the decryption process. So even if
the server is compromised no plain text data is obtained, because at the server all the data
is in encrypted form.

From clients, they obtain the key pair from KMC, then encrypt the gradients and send
it to the server for aggregation. The server sends back the global model but in encrypted
form. During the entire process, clients cannot access each other’s data or the gradients
which can ensure data security.

This process is majorly performed in three steps:

1. KeyGen: The key management center generates the Public key PubK = (p, q) and
Private key PriK = (δ, κ) using Paillier cryptosystem as mentioned in [40].

2. Encrypt_grad: Here, the model gradients Wr
n are encrypted using PubK(p, q) and

results in E(Wr
n). For example, if m is the plain text and C is the cipher text the

encryption is represented as:
C = qm. rpmod p2 (18)

where r is random number such that r < p.
3. Decrypt_grad: Each edge device performs decryption upon receiving the cipher text

C from the cloud server and retrieves the updated gradients W̃r. The decryption is
performed on C using the private key PriK(δ, κ) to obtain the plaintext m.

m =
L(Cδ mod p2)

(qδ mod p2)
mod p (19)
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Analysis of Encryption Scheme

As far as the overhead and complexity of the encryption scheme are considered, each
edge device En is required to perform the encryption and decryption task and it can be
denoted by:

Encrypt_TC = O(N ∗ R ∗ E(Paillier)) (20)

Decrypt_TC = O(N ∗ R ∗ D(Paillier)) (21)

where R is the number of communication rounds and N is the number of edge devices
participating in the process of federated learning. D(Paillier), and E(Paillier) is the time
complexity of the Paillier method, which requires total G exponentiation operation and
relatively negligible multiplication operation in each round. Therefore, we can say that the
computational cost at each edge device is linearly proportional to the number of gradients
in the DL model. However, for the cloud server it only needs to perform X time of additive
operation while aggregating the encrypted gradients.

To obtain the overhead of Paillier encryption, the proposed scheme is evaluated for
the percentage of CPU consumption, memory occupied, and time taken to build the model.
From Table 1, it is evident that the proposed framework with Paillier encryption results
in increased CPU and memory consumption with high training time in comparison to
the proposed framework without Paillier encryption. This shows that using the Paillier
encryption adds an extra overhead to the proposed framework.

Table 1. Comparison of proposed framework with and without Paillier encryption.

Proposed Framework CPU Memory Time (in s)

Without Paillier encryption 20% 72% 3042
With Paillier encryption 83% 88% 76,920

5. Results and Discussion
5.1. Environmental Setup and Parameters

The proposed federated learning framework was implemented in Python using Tensor-
Flow (TensorFlow is an open-source library used in Python for deep learning applications)
and the designed deep learning model is implemented using Keras (https://keras.io/api/,
accessed on 20 July 2022) API. The proposed framework is implemented and evaluated
using Python 3.0 on a MacBook pro having an Apple M1 Pro chip with 10-core CPU and
16-core GPU, 16 GB RAM, and 1TB SSD. The parameters used for the FL model and DID
model based on the CNN + LSTM + MLP are described in Table 2.

Table 2. Parameters used in the proposed model.

FL Model Learning rate (0.01), Momentum (0.9), decay (0.01), loss function (binary
cross-entropy), epoch (10), number of clients (K = 2, 5, 10, 15)

DID Model (CNN + LSTM + MLP)

No. of hidden layers (11), dropout rate (0.2), CNN Layer 1 (filters (128), kernel size (3),
activation function (relu)), CNN Layer 1 (filters (64), kernel size (3), activation function
(relu)), pooing size (2), strides (2), LSTM layers (perceptron (50), activation function
(tanh)), MLP layer (perceptron (100), activation function (tanh), output layer activation
function (sigmoid)), optimizer (adam), loss (binary cross entropy)

5.2. Dataset Description

Analysis of the proposed framework was performed using the X-IIoTID dataset. X-IIoT
is an IIoT-based intrusion dataset that captures the heterogeneity of network traffic as well
as system activities produced by diverse IIoT devices. The features in the X-IIoTID dataset
are gathered and created from a variety of data sources. The dataset has 68 attributes,
including features linked to hosts and network traffic. It covers nine different attack
types, including reconnaissance, weaponization, lateral movement, Command and Control

https://keras.io/api/
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(C&C), tampering, Ransom Denial of Service (RDoS), exfiltration, and crypto-ransomware.
However, in this work, we are interested in classifying attacks and normal requests. As
a result, we grouped them all under the heading “attack”. Classification into numerous
attack categories will also be taken into consideration in future development. The X-IIoTID
dataset has 820,834 cases with 68 features [37] and two labels (421,417 as normal and 399,417
as attacks). In this work, the data resource is split, with 80% of it being used for training
and 20% for testing. The training portion is then further divided into equal portions for
each industrial agent, which is used by them to train their local model. Keeping in mind
the practical application of the federated framework, a scaling factor (or weightage) is
implemented to incorporate the factor of variable data strength offered by different clients,
i.e., it takes into account that the data at all the client’s end would not be in equal portions.

5.3. Performance Metrics Used

The metrics used to assess the proposed FLDID framework are classification Accuracy,
Precision, Recall, and F1-Score. True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN), are used to express these metrics, respectively, where:

TP: Specify the count of attack requests rightly predicted as attack;
TN: Specify the count of benign samples rightly predicted as benign;
FP: Count of benign requests falsely predicted as attack;
FN: Count of attack requests falsely predicted as benign.

1. Accuracy: It is the percentage of the right prediction of attack and benign requests

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(22)

2. Recall: It is defined as the ratio of right prediction of attack to the all observations in
actual class

Recall =
TP

(TP + FN)
(23)

3. Precision: It is the ratio of right prediction of benign request to the entire predicted
benign requests.

Precision =
TP

(TP + FP)
(24)

4. F1-Score: This score is the measure of test’s accuracy and calculated using Precision
and Recall.

F1-Score = 2 ∗ ( (Recall ∗ Precision)
(Recall + Precision)

) (25)

5.4. Result Evaluation

To evaluate the performance of the proposed FLDID framework, experiments are
conducted under four scenarios in which the number of edge devices considered is N = 2,
5, 10, and 15, respectively. For each scenario, the number of rounds considered is R = 2, 4, 6,
8, and 10. Table 3 shows the obtained results of the proposed FLDID framework for the
metrics defined in Section 5.3.

For all the scenarios, it is seen that the FLDID framework performs well on all the
metrics. It is worth noting that with the proposed framework for the different number of
edge devices, we achieved good accuracy, precision, recall and F-Score in all the scenarios.

The proposed FLDID framework is also compared with individual CNN, LSTM, and
MLP models in a federated way to show the domination of the proposed model in compar-
ison to individual DL models. Figure 3 shows that the proposed model overperforms on
all the matrices in comparison to the individual models.
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Figure 3. Comparison of proposed model with individual DL models.

Table 3. Performance of FLDID framework under 4 different scenarios.

N R Accuracy Precision Recall F-Score

2

2 0.99032 0.99555 0.98449 0.98999
4 0.99183 0.9946 0.98857 0.99157
6 0.99259 0.9947 0.99004 0.99237
8 0.99306 0.99368 0.99204 0.99286
10 0.99348 0.99634 0.99022 0.99327

5

2 0.99373 0.99573 0.99135 0.99353
4 0.99409 0.99621 0.99161 0.9939
6 0.99415 0.99577 0.99219 0.99398
8 0.99415 0.99626 0.99169 0.99397
10 0.99428 0.99665 0.99157 0.9941

10

2 0.99432 0.99645 0.99186 0.99415
4 0.99434 0.99637 0.99198 0.99417
6 0.99437 0.99642 0.99198 0.99419
8 0.99443 0.99654 0.99199 0.99426
10 0.99438 0.99645 0.99198 0.99421

15

2 0.99441 0.99654 0.99195 0.99424
4 0.99443 0.99644 0.9921 0.99426
6 0.99443 0.99667 0.99185 0.99426
8 0.99445 0.99657 0.99199 0.99428
10 0.99447 0.99659 0.99203 0.9943

Moreover, to show the effectiveness of the proposed approach, the results are also
evaluated on different data sizes. As shown in Figure 4, it is observed that with less data
(insufficient traces) model does not achieve good accuracy, but with the increased data size
(sufficient traces) good accuracy can be achieved. Therefore, federated learning is used in
this work to overcome the problem of limited data for training the model and ensuring
data privacy as well.

Figure 4. Model accuracy with different data sizes.
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5.4.1. Performance Comparison with Centralized and Isolated Models

In this section, the FLDID is compared with the central and isolated model. In a
centrally built ideal model, the central entity uses all the data to build the model. While
with the isolated model, the model is built at each edge device with limited data available
to them. While evaluating the centralized model, it is assumed that all the smart industries
allow their data to be used by the central entity to build the model. However, in isolated
models smart industries do not share their data, they build the model with the limited data
available to them.

Figure 5 shows the performance of the proposed, centralized and isolated model
for different metrics under different scenarios for 10 rounds. As we can observe that the
local models do not perform satisfactorily in comparison to the proposed models in all
the scenarios due to limited data availability while training the model. Moreover, it can
be seen that the proposed model gives good results and almost performs similarly to
the centralized (ideal) model. However, with centralized model data privacy cannot be
achieved as all the smart industries have to provide their data to the central entity for
model building. However, with the proposed framework similar performance for intrusion
detection can be achieved while preserving data privacy. However, with federated learning
sometimes trustworthy but curious clients and servers may cause data inference attacks.
As the model gradients are sent from clients to servers, which can be used in the inference
attack. Thus, to ensure the privacy of model gradients and save the data from inference
attacks, Paillier-based encryption is also used. However, using encryption increase the
overhead of the proposed framework.

(a) (b)

(c) (d)

Figure 5. Performance comparison of FLDID with centralized and isolated models with different
numbers of edge devices for R = 10: (a) N = 2, (b) N = 5, (c) N = 10, (d) N = 15.

5.4.2. Performance Comparison with Baseline Studies

In this section, we present the comparison of the proposed FLDID framework with
some state-of-the-art studies that use the federated learning framework. The existing
work considered for comparison are: (1) in the work [41] author used a simple MLP-
based FL framework for intrusion detection in the health care domain; (2) in [32], GRU-
based FL framework for intrusion detection in IIoT domain is used; (3) in [42], the author
presents a CNN-based FL framework for the request classification. These baseline studies
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are re-implemented in our experimental setup and compared with the proposed FLDID
framework on the X-IIoTID dataset.

Figure 6 shows the performance comparison for accuracy and F-score of FLDID with
the baseline studies for the different number of edge devices, N = 2, 5, 10, 15. It is worth
noting that the proposed FLDID framework outperforms all the baseline studies and
achieved the highest accuracy and F-Score.

(a) (b)

Figure 6. Performance comparison of FLDID with state-of-the-art approaches with different number
of edge devices for R = 10: (a) N = 2, (b) N = 5.

5.4.3. Performance Comparison of Proposed Model with ML Classifiers

The proposed FLDID framework is also compared with ML models. The ML models
considered are Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Logistic Re-
gression (LR), and Decision Tree (DT). On comparing as mentioned in Table 4, it is observed
that the proposed FLDID framework and DT outperforms SVM, LR, and KNN classifiers
and achieves good accuracy which is more than 99%. Moreover, KNN, DT, LR and the
proposed framework consume fewer resources compared to SVM. However, as we are
using a hybrid of CNN+LSTM+MLP-based deep learning model with federated learning
to increase the detection accuracy, thus it results in high training time in comparison to LR,
KNN, and DT. Although DT and KNN perform almost similarly to the proposed frame-
work, they fail to ensure data privacy between different industrial agents while training
the model. However, the proposed framework wins over in this context and ensures data
privacy along with high accuracy which is the major concern in our scenario.

Table 4. Performance comparison of proposed model with other ML models.

Classifier Accuracy CPU Memory Time (in s)

SVM 0.9227 35% 90% 4265
LR 0.9148 15% 80% 36.411
KNN 0.9847 14% 75% 0.6592
DT 0.9904 19% 78% 4.975
Proposed 0.9979 20% 72% 3042

6. Conclusions

This work proposes a federated learning-enabled deep intrusion detection framework
to detect cyber threats in smart manufacturing industries. The proposed framework
enables multiple smart manufacturing industries to collaboratively build a comprehensive
intrusion detection model through their representative edge devices. Moreover, in this
work, the deep learning-based DID model using hybrid CNN+LSTM+MLP is used for
intrusion detection. The experimental results show that the proposed FLDID framework
outperforms the other state-of-the-art approaches and achieves good results for detecting
cyber threats in smart manufacturing industries. While building the model collaboratively,
the proposed framework also ensures it is built in a privacy-preserving way. The privacy
of model parameters is achieved by building a secure channel between the edge devices
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and the cloud server using partial homomorphic encryption, i.e., the Paillier encryption
method. However, homomorphic encryption will unavoidably result in increased overhead
for the encryption and decryption process, which will substantially limit the effectiveness
of training.

Therefore, in future work, the performance of the learning process will be accelerated
by using efficient homomorphic encryption methods which results in low overhead. More-
over, a more robust and personalized federated learning should be considered, which helps
to divide similar clients into clusters and handles the data poisoning attack. Additionally, to
identify different types of attacks, we concentrate on providing the multiclass classification
framework.
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